SINTEZA STRANSKOVERIŽNIH TEKOČEKRISTALINIČNIH POLIURETANOV Z ELEKTROSTATSKIMI INTERAKCIJAMI

SYNTHESIS OF SIDE-CHAIN LIQUIDE CRYSTALLINE POLYURETHANES WITH ELECTROSTATIC INTERACTIONS

Aneta Mirčeva, Majda Žigon

Kemijski inštitut, Hajdrihova 19, 1000 Ljubljana

Prejem rokopisa – received: 1999-04-01; sprejem za objavo – accepted for publications: 1999-05-11

Supramolekularne stranskoverižne tekočekristalinične poliuretane, ki še niso bili opisani v literaturi, smo pripravili na osnovi elektrostatskih interakcij. Izhajali smo iz karboksiliranih poliuretanov in aminiranih bifenilnih mezogenih spojin (1,1,1-trietil-(4-(4'-metoksibifenil)oksi)alkil amonijevi bromidi). Ob izločitvi HBr nastanejo ionski segmenti (-COO⁻ na polimerni verigi in kvarterni dušik na mezogeni enoti), ki se elektrostatsko povežejo. Tako dobimo polimerne tekočekristalinične ionske komplekse, ki imajo smektično mezofazo in težnjo po kristalizaciji.

Ključne besede: poliuretani, stranskoverižni tekočekristalinični poliuretani, supramolekularni polimeri, elektrostatske interakcije

Novel supramolecular side-chain liquide crystalline polyurethanes were prepared on the basis of electrostatic interactions between carboxylated polyurethane and aminated biphenyl mesogenic compounds (1,1,1-triethyl-(4-(4'-metoxybifenyl))) alkyl amino bromides). By elimination of HBr, the ionic segments that interact electrostatically (-COO⁻ of the polymer backbone and quaternary nitrogen of the mesogenic unit) are formed. The obtained polimeric liquid crystalline ionic complexes have smectic type of mesophase and show a tendency toward crystallization.

Key words: polyurethanes, side-chain liquid crystalline polyurethanes, supramolecular polymers, electrostatic interactions

1 UVOD

Stranskoverižni tekočekristalinični (SVTK) polimeri so posebno zanimiva zvrst materialov, ker združujejo anizotropne lastnosti tekočekristalnih nizkomolekularnih spojin z mehanskimi in predelovalnimi lastnostmi polimerov. Uporabni so na več področjih: v nelinearni optiki¹⁻³, za naprave za shranjevanje podatkov⁴⁻⁶, kot stacionarne faze za kromatografijo⁷, za pripravo separacijskih membran⁸, polimernih elektrolitov⁹ itn.

Najpogosteje jih pripravimo s polimerizacijo reaktivnih mezogenih monomerov¹⁰⁻¹². Izhajamo pa lahko tudi iz polimera s funkcionalnimi skupinami na verigi, na katere s kovalentnimi vezmi pripnemo mezogene spojine¹³. Novejši način priprave je molekularno razpoznavanje, ki temelji na nekovalentnih interakcijah (vodikove vezi, elektrostatske interakcije) med polimerno verigo in mezogenimi spojinami; nastanejo t.i. supramolekularni SVTK-polimeri¹⁴⁻¹⁶.

V tem delu predstavljamo preliminarne rezultate sinteze supramolekularnih SVTK-poliuretanov (PU) na osnovi elektrostatskih interakcij med karboksiliranim poliuretanom in aminiranimi bromoalkilnimi bifenilnimi mezogenimi spojinami.

2 EKSPERIMENTALNO DELO

2.1 Metode

Z IR spektroskopijo smo spremljali potek reakcij ter opredelili produkte. IR spektre smo posneli s Perkin-El-

KOVINE, ZLITINE, TEHNOLOGIJE 33 (1999) 3-4

merjevim spektrometrom FTIR 1725X. Z NMR spektroskopijo smo določili strukturo produktov. Spektre NMR smo posneli na Varianovem aparatu VXR 300 s trimetilsilanom (TMS) kot internim standardom. Temperature faznih prehodov smo izmerili s Perkin-Elmerjevim diferenčnim dinamičnim kalorimetrom DSC-7. Vzorce smo dvakrat zapored (v ciklih) segrevali in ohlajali od -50°C do 150°C s hitrostjo 10°C/min. Mikroskopske slike tankih plasti sintetiziranih termotropnih produktov smo dobili s polarizacijskim mikroskopom Carl Zeiss Stemi SV, opremljenim z ogrevalno mizico. Rentgenske uklonske slike smo posneli na Siemensovem D-5000 difraktometru s CuKa svetlobo (=0,154 nm) s korakom 0.02° od $1-30^{\circ}$ (v 2θ) z 2s na korak. Rentgenske meritve so bile opravljene na neorientiranih vzorcih v obliki tankih plasti, pripravljenih z ulivanjem pri 150°C.

2.2 Sinteza

Reaktivne, s COOH skupinami funkcionalizirane PU, smo pripravili z adicijsko polimerizacijo heksametilen diizocianata (HDI) in dimetilol propionske kisline (DMPA) v molskem razmerju 1:1. Sinteza je potekala v DMF raztopini v inertni atmosferi pri 60°C, brez katalizatorja.

Mezogene nizkomolekularne spojine, α -bromo- ω -(4'-metoksibifenil-4-oksi)alkane, oznaka Sn (n = 6 ali 8 metilenskih skupin), smo sintetizirali po postopku, ki je opisan v literaturi¹⁷. Spojine smo nato aminirali v DMF z

A. MIRČEVA, M. ŽIGON: SINTEZA STRANSKOVERIŽNIH TEKOČEKRISTALIČNIH...

Shema 1: Supramolekularni polimer PU-Sn-A Scheme 1: The supramolecular polymer PU-Sn-A

dodatkom trietilamina (TEA) v prebitku, pri temperaturi 70-80°C. Reakcijo aminiranja, pri kateri nastanejo 1,1,1-trietil-(4-(4'-metoksibifenil)oksi)alkil amonijevi bromidi (Sn-A), smo spremljali s tankoplastno kromatografijo (TLC). Aminirane produkte smo čistili z večkratnim raztapljanjem v kloroformu in obarjanjem v suhem etru.

Z mešanjem PU in Sn-A v ekvimolarnem razmerju kislinskih in kvarternih amino skupin v DMF je pri segrevanju pri 50°C nastal kompleks, supramolekularni produkt PU-Sn-A (**shema 1**).

3 REZULTATI IN DISKUSIJA

FTIR-spektri (slika 1) so potrdili tako nastanek aminirane mezogene spojine Sn-A kot tudi polimernega kompleksa PU-Sn-A. Pri reakciji bromoalkana s TEA izgine C-Br-trak pri 648 cm⁻¹. Pojav širokega traku okrog 3500 cm⁻¹ kaže, da je aminirani produkt zelo higroskopičen. Zaradi elektrostatskih interakcij med poliuretanskimi -COO⁻ skupinami in kvarterniziranim

Slika 1: FTIR-spektri bromirane mezogene spojine (a), aminirane mezogene spojine(b), poliuretana (c) in supramolekularnega produkta (d)

Figure 1: FTIR spectra of the brominated mesogenic compound (a), the aminated mesogenic compound (b), the polyurethane (c) and the supramolecular product (d)

Slika 2: ¹H NMR-spektra S6 (a) in S6-A (b) Figure 2: ¹H NMR spectra of S6 (a) and S6-A (b)

dušikom aminirane spojine se C=O-trak pri 1720 cm⁻¹ (uretanske -NHCOO- ter kislinske -COOH skupine) zoži, nakaže pa se C=O-trak okoli 1550 cm⁻¹, ki je značilen za -COO⁻. Kompleks verjetno nastane po odcepitvi HBr, kar so ugotovili tudi Bazuin in sodelavci¹⁸, ki so študirali nastanek kompleksov iz enakih aminiranih spojin in poliakrilne kisline.

Tudi NMR-analiza je potrdila aminiranje Sn-spojin. Tako v ¹H-spektru S6-A (**slika 2**) vidimo tri nove signale: pri 3,49, 3,30 in 1,53 ppm, ki smo jih pripisali resonancam vodikov v skupinah $-N(CH_2CH_3)_3$, $-CH_2-N(CH_2CH_3)_3$ in $-CH_2CH_2-N(CH_2CH_3)_3$ Istočasno izgineta signala pri 3,41 in 1,91 ppm, ki pripadata resonancam protonov skupin $-CH_2Br$ in $-CH_2CH_2Br$. Spremembe opazimo tudi v ¹³C-spektru: novi trak pri 57,38 ppm ustreza resonanci ogljika skupine $-CH_2-N(CH_2CH_3)_3$. Signal ogljikovega atoma skupine

Slika 3: DSC-krivulje drugega segrevanja (a) in ohlajanja (b) Figure 3: DSC curves of the second heating (a) and cooling (b)

Slika 4a: Mozaična struktura PU-S8-A pri 50°C Figure 4a: The mosaic structure of PU-S8-A at 50°C

Slika 4b: Kristalizacija PU-S8-A pri 35°C **Figure 4b:** The crystallization of PU-S8-A at 35°C

-COOH v ¹³C-spektru PU se od 174,12 ppm premakne na 175,60 ppm skupine -COO⁻ v spektru kompleksa PU-S6-A.

3.1 Tekočekristalinične lastnosti

Termične lastnosti sintetiziranih spojin smo določili z metodo DSC. Krivulji drugega segrevanja spojin S6 in S8 imata tališče pri 122 oz. 152°C. Aminirani spojini S6-A in S8-A sta tekočekristalni in imata pri ohlajanju dva prehoda: v območju 110-120°C je prehod iz izotropne faze v mezofazo, okoli 70°C pa pride do kristalizacije. PU ima samo steklasti prehod (T_g) pri 11C, kompleksa PU-S6-A in PU-S8-A imata pa poleg T_g (pri 26 oz. 25°C) tudi prehod z majhno entalpijo (pri 55 oz. 57°C), ki smo ga pripisali prehodu iz izotropne faze v mezofazo (**slika 3**).

KOVINE, ZLITINE, TEHNOLOGIJE 33 (1999) 3-4

Slika 5: Difraktogram PU-S8-A Figure 5: Diffractogram of PU-S8-A

Z optično mikroskopijo (POM) smo pri obeh polimernih kompleksih potrdili prisotnost mezofaze z mozaično smektično strukturo (**slika 4a**). Pri nižjih temperaturah kompleksa kristalizirata (**slika 4b**). Prehoda iz mezofaze v kristalno fazo z DSC nismo zaznali zaradi zelo majhne toplotne spremembe.

Meritve supramolekularnih produktov PU-Sn-A z rentgensko difrakcijo so potrdile ugotovitve DSC-meritev in POM. Difraktograma poliuretanskih kompleksov PU-S6-A in PU-S8-A sta si podobna (difraktogram PU-S8-A je prikazan na **sliki 5**). Oba imata dva signala v območju nizkih kotov, ki so drugega in tretjega reda in ustrezajo periodičnosti (d) 1,86 nm (pri PU-S6-A) in 2,04 nm (pri PU-S8-A) zaradi plastovite smektične strukture. V območju širokih kotov je difuzni signal zaradi neurejenosti mezogenih enot znotraj smektičnih plasti ter signal, ki ga pripisujemo kristalizaciji stranskih verig.

4 SKLEPI

Sintetizirali smo nove supramolekularne stranskoverižne tekočekristalinične poliuretane z elektrostatskimi interakcijami med polimerno verigo in stransko mezogeno komponento. Pri mešanju karboksiliranih poliuretanov in aminiranih bifenilnih mezogenih enot nastanejo ionski segmenti, ki se elektrostatsko povežejo v ionske komplekse s smektično mezofazo in težnjo po kristalizaciji.

ZAHVALA

To delo je del projekta, ki ga financira Ministrstvo za znanost in tehnologijo Republike Slovenije. Ministrstvu se za financiranje zahvaljujemo.

5 LITERATURA

- ¹ M. Chen, L. R. Dalton, Y. Shi, W. H. Steier, *Macromolecules*, 24 (**1991**) 5421-5428
- ² B. A. Reinhardt, TRIP, 1 (1993) 4-8

A. MIRČEVA, M. ŽIGON: SINTEZA STRANSKOVERIŽNIH TEKOČEKRISTALIČNIH...

- ³ M. Eich, J. H. Wendorff, *Makromol. Chem.*, 186 (1985) 2639-2648
 ⁴ G. S. Attard, *TRIP*, 1 (1993) 79-86
- ¹⁰ M. Brecl, T. Malavašič ,*J Polym Sci.*, *Polym. Chem.*, 35 (1997) 2871-2888
 ¹¹ A. Mirčeva, N. Oman, M. Žigon, *Polym.Bull.*, 40 (1998) 469-476
- ⁵ M. S. Ho, A. Natansohn, P. Rochon, *Macromolecules*, 29 (1996) 44-49
- ⁶ Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, *Macromolecules*, 28 (1995) 2172-2183
- ⁷ J. L. Lin, C. S. Hsu, *Polymer J*, 25 (1993) 153-167
- ⁸ D. S. Chen, G. H. Hsiue, *Makromol. Chem.*, 194 (**1993**) 2025-2033
- ⁹ C. J. Hsieh, G. H. Hsiue, C. S. Hsu, *Makromol. Chem.*, 191 (**1990**) 2195-2230
- ¹² M. Brecl, M. Žigon, T. Malavašič, J Polym Sci, Polym Chem., 36 (1998) 2135-2146
- ¹³ A. Mirčeva, M. Žigon, Polym. Bull., 41, (1998) 447-453
- ¹⁴ S. Ujiie, K. Limura, *Macromolecules*, 35 (1995) 3174-3178
- ¹⁵ T. Kato, J. M. Frechet, *Macromolecules*, 22 (1989) 3818-3829
- ¹⁶ C. T. Imrie, TRIP, 3 (1995) 22-29
- ¹⁷ J. V. Crivello, M. Deptolla, H. Ringsdorf, *Liq. Cryst.*, 3 (1988) 235-247
- ¹⁸G. C. Bazuin, A. Turk, *Macromolecules*, 28 (1995) 8877-8880