IR SPEKTROSKOPSKA RAZISKAVA VPLIVA DODATKA ŽELEZA NA ELEKTROKROMNE LASTNOSTI V₂O₅

IR SPECTROSCOPIC INVESTIGATION OF THE INFLUENCE OF IRON ADDITIONS ON THE ELECTROCHROMIC PROPERTIES OF $$\rm V_2O_5$$

Angela Šurca Vuk, Boris Orel

Kemijski inštitut, Hajdrihova 19, SI - 1000 Ljubljana, Slovenija angela.surca@ki.si

Prejem rokopisa - received: 2000-10-10; sprejem za objavo - accepted for publication: 2000-11-17

Oksidne tanke plasti V_2O_5 in Fe/V (1:9) smo pripravili po sol-gel postopku in s tehniko potapljanja iz prekurzorjev V-oksoizopropoksida in Fe-nitrata. Po termični obdelavi pri 400 °C je postala faza V_2O_5 prevladujoča tudi v oksidnih plasteh Fe/V (1:9), kljub temu pa se je elektrokemijska stabilnost teh plasti izboljšala. Vpliv interkalacije ionov Li⁺ na strukturi obeh vrst plasti smo študirali z ex-situ IR absorpcijsko spektroelektrokemijo. Primerjava IR spektrov je pokazala, da se strukturne spremembe, ki vodijo do razgradnje plasti V_2O_5 , v primeru oksidnih plasti Fe/V (1:9) pojavijo pri večjih interkalacijskih koeficientih x (v Li_x V_2O_5).

Ključne besede: Tanke plasti, V2O5, oksidne plasti Fe/V, elektrokromizem, IR spektroskopija

 V_2O_5 and Fe/V (1:9)-oxide thin films were prepared using sol-gel synthesis and dip-coating deposition from V-oxoisopropoxide and Fe-nitrate precursors. After heating at 400 °C, V_2O_5 also becomes the prevailing phase in Fe/V (1:9)-oxide films, however, the electrochemical stability of these films was improved. The influence of the insertion of Li⁺ ions on the structures of V_2O_5 and Fe/V (1:9)-oxide films was studied using ex-situ IR absorbance spectroelectrochemistry. The comparison of the IR spectra revealed that the structural changes, which lead to the degradation of the V_2O_5 structure, are retarded in Fe/V (1:9)-oxide films. Key words: Thin films, V_2O_5 , Fe/V-oxide film, electrochromism, IR spectroscopy

1 UVOD

V₂O₅ se v obliki tankih plasti uporablja v ionooptičnih napravah, npr. elektrokromnih prikazovalnikih oz. pametnih oknih, kot ionski hranilnik¹⁻³, v obliki prahov pa v litijevih baterijah⁴⁻⁶. Tako so plasti V₂O₅ že bile pripravljene z različnimi vakuumskimi tehnikami nanosa^{1,2}, elektrokemijsko^{1,5} ter s sol-gel sintezo v povezavi s tehniko potapljanja^{1,3}. Plastovito strukturo ortorombske faze V₂O₅ sestavljajo dvojne verige kvadratnih piramid s skupnimi robovi (v smeri osi b), ki so med seboj povezane preko oglišč (v smeri osi a)7. Vanadilna vez V-O_A v vrhu piramide je najkrajša (0,158 nm), V...O_A vez na nasprotni strani pa najdaljša (0,278 nm), kar ponazarja šibke van der Wallsove interakcije med plastmi. Razdalja med V in mostovnim O_B (povezave dvojnih verig prek ogljišč) je 0,177 nm, pri preostalih vezeh 3V-O_C (v dvojnih verigah) pa 0,188 nm.

Zaradi svoje plastovite strukture sodi V_2O_5 med interkalacijske spojine¹⁻⁶. V potencialnem območju med 4,3 in 2,6 V proti Li v 1M LiClO₄ v propilen karbonatu (PC) kristalinične plasti V_2O_5 ohranjajo svojo strukturo in ne izgubijo ionske kapacitete (~15 mC/cm²). V razširjenem območju (4,3 do 1,8 V proti Li) imajo te plasti večjo ionsko kapaciteto (> 25 mC/cm²), ki bi zadoščala za uporabo v pametnih sklopih¹⁻³, vendar pa je elektrokemijska stabilnost plasti V_2O_5 v tem območju precej slabša. Z namenom, da bi slednjo izboljšali, smo začeli raziskovati vpliv dodatka železa na strukturne lastnosti oksidnih plasti Fe/V.

Povečanje elektrokemijske stabilnosti prahov V₂O₅ z dodajanjem Fe so že preučevali kot možnost priprave boljših materialov za litijeve baterije⁸⁻¹⁰. Tako sta Saidi⁸ in Maingot⁹ pripravila spojini Fe_{0,12}V₂O₅ oz. Fe_{0,12}V₂O_{5.16} s sol-gel postopkom na osnovi ionske izmenjave. Maingot⁹ je potrdil izboljšanje elektrokemijske stabilnosti, in sicer je bila v potencialnem območju med 3,8 in 2,0 V proti Li kapaciteta v 40. ciklu 210 Ah/kg za Fe_{0.12}V₂O_{5.16} in le 150 Ah/kg za V₂O₅. Nadalje je bila s spontano polikondenzacijo iz dekavanadatne kisline pripravljena ortorombska faza $Fe_{0,11}V_2O_{5,16}$ ¹⁰, v kateri se Fe^{3+} ioni nahajajo v ab-ravnini plasti V₂O₅ med štirimi kisiki. Dodatna kisika nad ab-ravnino in pod njo oblikujeta oktaedrično okolje Fe³⁺, kar poveča trodimenzionalni značaj spojine in stabilizira strukturo proti Li+-interkalaciji.

IR spektroskopija je primerna tehnika za raziskovanje strukturnih lastnosti kristaliničnih oksidnih plasti V_2O_5 in Fe/V (1:9) v interkaliranih in deinterkaliranih stanjih^{3,11}. Pri našem predhodnem delu z V_2O_5 ^{3,12} smo že pokazali, da se pri interkalaciji do x = 1 v Li_x V_2O_5 (4,3 in 2,6 V proti Li) v IR spektrih pojavi premik valenčnega nihanja V-O_A (1016 cm⁻¹) k nižjim frekvencam (986 cm⁻¹), iz spektra izgine mostovno valenčno nihanje V-O_B-V pri 795 cm⁻¹, v območju valenčnih (3V-O_C) in kotnih (V-O-V) nihanj pa nastaneta dva trakova pri 583 in 485 cm⁻¹. Pomemben je tudi pojav polaronske absorpcije med $0 < x \le 0.5$, ki se v IR spektrih konča pri 2000 cm-1. Omenjene ugotovitve se skladajo z drugimi literaturnimi podatki^{2,5,13,14}, ki pa so nepopolni, saj so meritve pri plasteh narejene le v ožjem potencialnem območju². Večinoma pa so IR meritve V₂O₅ izvedene pri prahovih po elektrokemijski^{5,13} ali kemični litiaciji¹⁴. Pomanjkanje sistematičnih raziskav je poglavitni razlog, da smo se odločili izvesti podrobne ex-situ IR absorpcijske spektroelektrokemijske meritve oksidnih plasti V₂O₅ in Fe/V (1:9). Drugi razlog pa je odgovor na vprašanje, ali dodajanje železa vpliva na elektrokemijsko stabilnost V₂O₅.

2 EKSPERIMENTALNI DEL

Oksidne plasti V₂O₅ in Fe/V (1:9) smo pripravili po sol-gel alkoksidnem postopku. V-oksoizopropoksid smo raztopili v 2-propanolu, atmosferska voda pa je zadoščala, da so potekle hidrolizne in kondenzacijske reakcije. Plasti smo nanesli s tehniko potapljanja in jih termično obdelali pri 300 °C (1h). Pri pripravi oksidnih plasti Fe/V (1:9) smo v 2-propanolu najprej raztopili Fe(NO₃)₃.9H₂O in nato še V-oksoizopropoksid. Plasti smo termično obdelali pri 400 °C (1h).

Elektrokemijske meritve plasti, nanesene na K-steklo (SnO₂/F) ali silicijeve rezine (za IR spektre), smo izvedli s potenciostatom-galvanostatom EG&G PAR 273. Uporabili smo trielektrodno celico s plastjo kot delovno, Pt kot nasprotno in modificirano Ag/AgCl kot referenčno elektrodo. Ex-situ IR absorpcijske spektroelektrokemijske meritve smo naredili z FT-IR spektrometrom Perkin Elmer 2000 z ločljivostjo 4 cm⁻¹. Spektre smo izmerili po galvanostatski interkalaciji in njej sledeči deinterkalaciji z gostoto toka 26,7 μ A/cm² (V₂O₅) in 29,0 μ A/cm² (oksidne plasti Fe/V (1:9)). Interkalacijski koeficient x, tj. razmerje med številom molov interkaliranih ionov Li⁺ (n_{Li+}) in molov oksida v plasti (n_{V2O5}), smo povečevali po x = 0,25 v območju med 0 ≤ x ≤ 3,0 (v Li_xV₂O₅). Izračunali smo ga po enačbi¹:

$x = n_{Li+} / n_{V205} = I t M_{V205} / F A d \rho_{V205}$

I pomeni tok, t čas, F Faradayevo konstanto, A površino plasti, d debelino plasti ter Mv_{205} in ρv_{205} molsko maso in gostoto oksida. Podrobnosti o merilnih instrumentih in tehnikah so navedene v naših predhodnih publikacijah^{3,12}.

3 REZULTATI Z DISKUSIJO

Rezultate ex-situ IR spektroelektrokemijskih meritev V_2O_5 (**sliki 1 in 2**) smo asignirali na osnovi vibracijskih študij monokristalov^{15,16} in naših predhodnih raziskav kristaliničnih plasti V_2O_5 ^{3,12}. V IR spektru začetne plasti

 V_2O_5 (**slika 1a**) smo opazili valenčno nihanje vanadilne vezi V-O_A pri 1013 cm⁻¹, mostovno nihanje V-O_B-V pri 797 cm⁻¹, pod 600 cm⁻¹ pa se prekrivata valenčno (3V-O_C) in kotno (V-O-V) nihanje ^{3,15,16}. Interkalacija ionov Li⁺ do x = 0,25 (**slika 1b**) povzroči premik traku V-O_A na 1002 cm⁻¹, zmanjšanje intenzitete nihanja V-O_B-V, pojavi pa se tudi polaronska absorpcija nad 2000 cm⁻¹. Interkalacija je topotaktična in po deinterkalaciji v IR spektru spet dobimo vse trakove V₂O₅ (**slika 1c**).

Nadaljnje spreminjanje položajev in intenzitet IR trakov med postopnim povečevanjem x lahko razberemo s **slike 2**. Valenčno nihanje V-O_A po začetnem padcu frekvence s 1013 cm⁻¹ (x = 0) na 987 cm⁻¹ (x = 0.5) obdrži svoj položaj, vendar se pri x = 1,0 pojavi še šibka rama pri 945 cm⁻¹. Intenziteta obeh trakov začne padati pri x = 2,0, dokler se pri x = 2,5 ne združi v en sam šibek trak pri 955 cm⁻¹, ki se z večanjem x še pomika proti nižjim valovnim številom (927 cm⁻¹ pri x = 3,0; **slika 1d**). Intenziteta mostovnega nihanja V-O_B-V v spektrih interkalirane plasti hitro pade in po x > 0,5 omenjeno nihanje ni več vidno. Valenčno (3V-O_C) in kotno

Slika 1: Ex-situ IR absorpcijski spektri kristalinične plasti V₂O₅ (300 °C, 1h): a) začetno stanje, b) interkalacija do x = 0.25 (-0.05 mC/cm²nm), c) deinterkalacija po b), d) interkalacija do x = 3.0 (-0.53 mC/cm²nm) in e) deinterkalacija po d)

Figure 1: Ex-situ IR absorbance spectra of a crystalline V_2O_5 film (300 °C, 1h): a) initial state, b) charging to x = 0.25 (-0.05 mC/cm²nm), c) discharging after b), d) charging to x = 3.0 (-0.53 mC/cm²nm) and e) discharging after d)

(V-O-V) nihanje se v spektrih začetne plasti V_2O_5 in tiste, interkalirane do x = 0.25, precej prekrivata, nato pa se jasno ločita pri x = 1,0 na 629 in 544 cm⁻¹. Trak pri 629 cm⁻¹ oslabi v ramo pri x = 1,75, tako da spektrom med $2,0 \le x \le 2,75$ v tem območju dominira nihanje pri 580 cm⁻¹. Tudi ta trak z večanjem x počasi prehaja v ramo nihanja pri 480 cm⁻¹ (x = 3,0 na sliki 1d). V spektru deinterkalirane plasti po x = 3,0 (slika 1e) še lahko razberemo dva osnovna trakova pri 1004 in 813 cm⁻¹ ter širok trak pod 700 cm⁻¹, vendar so njihove intenzitete zelo nizke. Razlog za to je tudi čiščenje plasti pred snemanjem IR spektrov, ki pri x > 2,0 vodi do odtapljanja zgornjega sloja plasti V2O5. IR spektri deinterkaliranih stanj, ki smo jih posneli po vsaki interkalaciji, kažejo, da se osnovna struktura V₂O₅ zadrži do interkalacije do x = 0.5. Pri večjih x se mostovno nihanje V-O_B-V pomika proti višjim valovnim številom (do 813 cm⁻¹).

IR spektri interkaliranih stanj (**slika 1, 2**) se ujemajo z vrhovi gostote toka v prvi ciklovoltametrični (CV) krivulji kristalinične plasti V₂O₅ (5 mV/s), (**slika 3A**). Na primer, polaronska absorpcija parov V⁴⁺/V⁵⁺ je maksimalna pri x = 0,5, tj. po prvem katodnem tokovnem vrhu (0,35 V proti Ag/AgCl) v CV-krivulji, medtem ko pri x = 1,0 (po drugem tokovnem vrhu pri 0,15 V) v IR spektru ni več vidna. Tudi IR spekter deinterkaliranega stanja je povsem enak spektru začetne plasti V₂O₅ le v območju prvega tokovnega vrha (x = 0,5), med drugim katodnim vrhom pa se mostovno

Slika 2: Spreminjanje položajev IR trakov (cm⁻¹) kristalinične plasti V₂O₅ (300 °C, 1h) z interkalacijskim koeficientom x (v Li_xV₂O₅). 1025 - 900 cm⁻¹: V=O (vanadil) valenčno nihanje, 800 - 750 cm⁻¹: mostovno valenčno nihanje V-O-V in pod 650 cm⁻¹: (3V-O_C) valenčno in (V-O) kotno nihanje

Figure 2: Changes in the IR band positions (cm⁻¹) of a crystalline V₂O₅ film (300 °C, 1h) with intercalation coefficient x (in Li_xV₂O₅). 1025 - 900 cm⁻¹: V=O (vanadyl) stretching, 800 - 750 cm⁻¹: bridging V-O-V stretching, below 650 cm⁻¹: 3V-O_C stretching and V-O deformations

nihanje V-O_B-V pomakne z 797 na 800 cm⁻¹, kar kaže na ojačenje te vezi. Postopno zmanjševanje parametra a osnovne celice V₂O₅ (v smeri vezi V-O_B-V) med 0,3 < x < 0,9 je potrdil že Cocciantelli ⁴ z rentgenskim uklonom

Tabela 1: Značilnosti strukturnih modifikacij $Li_xV_2O_5$ **Table 1:** Structural modifications of $Li_xV_2O_5$

x	SM	značilnosti strukturne modifikacije
$(v Li_x V_2 O_5)$		
< 0,10 ¹⁷	α	• tip strukture V_2O_5 se ohrani
		 delno nagubanje plasti vzdolž osi a
		• pretvorba $V_2O_5 \leftrightarrow \alpha$ je reverzibilna
0,35 - 0,7 18	ε	• tip strukture V_2O_5 se ohrani
		 delno nagubanje plasti vzdolž osi a in večja razdalja med plastmi
		• pretvorba $\alpha \leftrightarrow \epsilon$ je reverzibilna
0,9 - 1 18	δ	• šibke vezi VO med plastmi se prekinejo
0,7 - 1 4		 plasti se zamaknejo vzdolž osi b in delno nagubajo vzdolž osi a
		 razdalja med plastmi se poveča
		 ioni Li⁺ s tetraedrično koordinirani s kisiki
0,88 - 1 17	γ	 zelo nagubane plasti [V₂O₅]_n vzdolž osi a
		 opažena je elektronska lokalizacija
		 različno velike kvadratne piramide [V⁵⁺O₅] in [V⁴⁺O₅] v strukturi
		 Li⁺ je oktraedrično koordiniran s kisiki
		• deinterkalacija Li ⁺ iz γ je možna, vendar vodi do nastanka γ -V ₂ O ₅ z enakim ogrodjem kot γ
> 1,25 4	ξ	 v ξ-fazo se lahko interkalira več Li⁺ kot v γ-fazo
> 2 ¹⁸	ω	ireverzibilne strukturne spremembe
		 vezi VO se prekinjajo, da je dovolj prostora za ione Li⁺
		 nastane po interkalaciji tretjega Li⁺ v V₂O₅
		• praktično ves Li ⁺ se lahko deinterkalira, vendar potencial pri tem močno poraste

x - stehiometrijski koeficient; SM strukturna modifikacija; Podatki so zbrani iz literature ^{4,17,18}. prahov. Pri x = 1,25 pa postanejo vidne tudi manjše spremembe intenzitete in oblike trakov v področju $3V-O_C$ in kotnih nihanj V-O-V pod 600 cm⁻¹. Med interkalacijo po tretjem tokovnem vrhu pri -0,8 V (**slika 3**) redukcija V⁵⁺ \rightarrow V⁴⁺ (x = 2,2) poteče do konca in dominantni IR trak pri 580 cm⁻¹ (2,0 \leq x \leq 2,5) nakazuje nastanek vibracijskih mest V⁴⁺. Četrti tokovni vrh pri -0,88 V pa ustreza začetku pojavljanja stanj V³⁺ in IR rame pri 502 cm⁻¹, ki se po zaključku petega tokovnega vrha pri -1,2 V (x = 4.0) pretvori v močan IR trak pri 480 cm⁻¹. Pretvorba vanadija v oksidacijsko stanje 3+ je povezana z amorfizacijo strukture V₂O₅, kar potrjuje tudi edini anodni tokovni vrh pri -0,2 V z ramo pri 0,5 V.

Spremembe v IR spektrih (**slika 2**) smo primerjali tudi s podatki o različnih $\text{Li}_x V_2 O_5$ kristaliničnih fazah (**tabela 1**), katerih obstoj so raziskovali predvsem z rentgenskim uklonom prahov ^{4,6,13,14,17,18}. Nastanek ξ -faze (tabela 1) je predpostavil le Cocciantelli ⁴, Rozier s sodelavci ⁶ pa je v območju 1 > x > 3 namesto nastanka γ - in ω -faze predpostavil kar tvorbo vanadatov (LiVO₃,

Slika 3: CV-krivulji A) kristalinične plasti V₂O₅ (300 °C, 1h) in B) oksidne plasti Fe/V (1:9) (400 °C, 1h) z nakazanimi vrednostmi Q/d in x. Elektrolit je bil 1M LiClO₄ v PC in hitrost preleta potenciala 5 mV/s.

Figure 3: CV curves of A) crystalline V_2O_5 film (300 °C, 1h) and B) Fe/V (1:9)-oxide film (400 °C, 1h) together with the indicated Q/d and x values. Electrolyte was 1M LiClO₄ in PC and the scan rate 5 mV/s

 Li_3VO_4) in nižjih oksidov (V_6O_{11} , V_2O_3 , ...). Na osnovi omenjene primerjave lahko sklepamo, da valenčno nihanje V-O_A preide na nižjo frekvenco 987 cm⁻¹, ko nastane čista ε-faza, v δ-fazi pa se pojavi še rama pri 945 cm⁻¹. Mostovno nihanje V-O_B-V se z majhno intenziteto pojavi še v ε-fazi, potem pa ni več vidno. Tudi valenčno $(3V-O_{C})$ in kotno (V-O-V) nihanje preideta na višje vrednosti valovnih števil okoli x = 1,0. Murphy ¹⁴ je v primeru ɛ-Li_{0,3}V₂O₅ faze, kemično sintetizirane iz prahu V₂O₅ in LiJ v acetonitrilu, našel v IR spektrih (KBr peletke) v vanadilnem območju dva močna trakova pri 1019 in 1002 cm⁻¹ z ramo pri 991 cm⁻¹ ter šibek mostovni trak V-O_B-V pri 798 cm⁻¹. Omenjeni spekter se dobro ujema z našim za Li_{0,25}V₂O₅ (slika 1b), ki ima v vanadilnem območju dominantni trak pri 1002 cm-1, vendar lahko s povečavami opazimo še šibko izraženi rami pri 1013 in 986 cm⁻¹. Zelo dobro pa se ujemata mostovni nihanji V-O_B-V pri 798 cm⁻¹ ¹⁴ in 797 cm⁻¹ (slika 1b). Podoben IR spekter faze ϵ -Li_{0.5}V₂O₅ je dobil tudi Steger 13 pri elektrokemijski litiaciji prahu V2O5: dva vrha v območju V-O_A (~1007 in ~992 cm⁻¹), mostovno nihanje V-O_B-V pa ni več vidno.

Precej manjše ujemanje spektrov pa smo dobili za δ-faze. Murphy ¹⁴ je za kemično pripravljeno δ-fazo opazil V-O_A nihanje pri 1015 in 973 cm⁻¹, mi pa za x = 1,0 pri 987 in 945 cm⁻¹ (**slika 2**). Ujemanje valenčnih nihanj 3V-O_C je boljše: 629 in 544 cm⁻¹ (**slika 2**) oz. 631 in 528 cm^{-1 14}. V nasprotju z Murphyjem ¹⁴ je Steger ¹³ opazil še nastanek tretjega traku V-O_A pri okoli 940 cm⁻¹ (945 cm⁻¹; **slika 2**).

Slika 4: Spreminjanje položajev IR trakov (cm⁻¹) oksidne plasti Fe/V (1:9) (300 °C, 1h) z interkalacijskim koeficientom x (v Li_xV₂O₅). Z XRD-analizo smo potrdili prisotnost V₂O₅ v teh plasteh. 1025 - 900 cm⁻¹: V=O (vanadil) valenčno nihanje, 800 - 750 cm⁻¹: mostovno valenčno nihanje V-O-V in pod 650 cm⁻¹: (3V-O_C) valenčno in (V-O) kotno nihanje

Figure 4: Changes in the IR band positions (cm⁻¹) of a Fe/V (1:9)-oxide film (400 °C, 1h) with intercalation coefficient x (in $Li_xV_2O_5$). XRD showed the presence of a V_2O_5 phase in these films. 1025 - 900 cm⁻¹: V=O (vanadyl) stretching, 800 - 750 cm⁻¹: bridging V-O-V stretching, below 650 cm⁻¹: 3V-O_C stretching and V-O deformations

Slika 5: Ex-situ IR absorpcijski spektri oksidne plasti Fe/V (1:9) (400 °C, 1h): a) začetno stanje, b) interkalacija do $Q/d = -0.05 \text{ mC/cm}^2\text{nm}$ (x = 0,25), c) deinterkalacija po b), d) interkalacija do -0,53 mC/cm²nm (x = 3,0) in e) deinterkalacija po d)

Figure 5: Ex-situ IR absorbance spectra of a Fe/V (1:9)-oxide film (400 °C, 1h): a) initial state, b) charging to $Q/d = -0.05 \text{ mC/cm}^2\text{nm}$ (x = 0.25), c) discharging after b), d) charging to $-0.53 \text{ mC/cm}^2\text{nm}$ (x = 3,0) and e) discharging after d)

IR spektroskopija in rentgenski uklon oksidnih plasti Fe/V (1:9) in prahov sta pokazali, da po termični obdelavi pri 400 °C (1h) nastane pretežno kristalinični V₂O₅. Na sliki 4 tako predstavljamo frekvence in intenzitete omenjenih plasti glede na interkalacijski koeficient x v Li_xV₂O₅, za primerjavo pa dodajamo še razvoj faz v čistem kristaliničnem V₂O₅ (kot na sliki 2). Na tem mestu pa bi radi poudarili, da CV-krivulja oksidne plasti Fe/V (1:9) na sliki 3B jasno prikazuje, da ta plast ni povsem kristalinična in da so zato tudi vrednosti x okvirna števila (nepoznanje natančne gostote plasti), ki smo jih izračunali le zaradi primerjave, a na osnovi točnih vrednosti gostote naboja glede na debelino plasti (Q/d v mC/cm²nm). Vendar pa lahko s slike 3 razberemo, da se tudi Q/d-vrednosti za obe vrsti plasti med seboj razlikujejo. To povezujemo z dejstvom, da je difuzija litijevih ionov v oksidne plasti Fe/V (1:9) manjša, kar se bolj izraža pri ciklovoltametričnih meritvah (prelet potenciala) kot pa pri galvanostatski tehniki.

IR spekter začetne oksidne plasti Fe/V (1:9) (slika **5a**) je zelo podoben tistemu za V_2O_5 : valenčno nihanje V-O_A pri 1022 cm⁻¹, mostovno V-O_B-V pri 800 cm⁻¹ ter valenčno 3V-O_c in kotno nihanje V-O-V pod 550 cm⁻¹. Po interkalaciji do x = 0.25 (slika 5b) se pojavita dve nihanji V-O_A (1022 in 983 cm⁻¹), po interkalaciji do x =1,0 pa še tretje nihanje V-O_A pri 946 cm⁻¹. Mostovno $(V-O_B-V)$ valenčno nihanje (slika 4) je kot pri V₂O₅ (slika 2) vidno le do x = 0.5. Primerjava obeh grafov (sliki 2, 4) pokaže, da ostanejo frekvence in intenzitete v območju $0.75 \le x \le 2.75$ stabilnejše za oksidne plasti Fe/V (1:9). V IR spektru te plasti, interkalirane do x =3,0, pod 600 cm⁻¹ še dominira trak pri 580 cm⁻¹, medtem ko se nihanje pri 497 cm⁻¹ nakaže šele kot rama. Po deinterkalaciji je IR spekter (slika 5d) zelo podoben začetnemu (slika 5a), kar neizpodbitno dokazuje povečano elektrokemijsko stabilnost plasti z dodatkom železa v primerjavi s plastmi V₂O₅. Oksidne plasti Fe/V (1:9) so tudi mehansko odpornejše in imajo boljšo adhezijo na podlago, tako da med čiščenjem teh plasti nismo opazili znatnejšega odtapljanja materiala.

4 SKLEPI

Rezultati ex-situ IR spektroelektrokemijskih meritev so pokazali, da so oksidne plasti Fe/V (1:9) bolj stabiline za elektrokemijsko interkalacijo kot kristalinične plasti V_2O_5 . Oksidne plasti Fe/V (1:9) tudi po interkalaciji do x = 3,0 (v Li_xV₂O₅) ohranijo prvotno strukturo, medtem ko se v čistih plasteh V_2O_5 struktura poruši in amorfizira.

ZAHVALA

Avtorji se zahvaljujemo Ministrstvu za znanost in tehnologijo za financiranje projekta J1-2125, ki nam je omogočil izvedbo študija interkalacijskih lastnosti V_2O_5 in Fe/V (1:9)-oksidnih filmov.

5 LITERATURA

- ¹C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier Science, Amsterdam, 1995.
- ² A. Talledo, C. G. Granqvist, J. Appl. Phys. 77 (1995) 4655
- ³ A. Šurca, B. Orel, B. Dražič, B. Pihlar, J. Electrochem. Soc. 146 (1999) 232
- ⁴ J. M. Cocciantelli, J. P. Doumerc, M. Pouchard, J. Power Sources 34 (1991) 103
- ⁵Y. Sato, T. Nomura, H. Tanaka, K. Kobayakawa, J. Electrochem. Soc. 138 (**1991**) L37
- ⁶ P. Rozier, J. M. Savariault, J. Galy, Solid State Ionics 98 (1997) 133
- ⁷ R. Enjalbert, J. Galy, Acta Cryst. C43 (**1986**) 1467
- ⁸ M. Y. Saidi, J. Barker, E. S. Saidi, R. Koksbang, Solid State Ionics 82 (**1995**) 203
- ⁹S. Maingot, Ph. Deniard, N. Baffier, J. P. Pereira-Ramos, A. Kahn-Harari, R. Brec, P. Willmann, J. Power Sources 54 (**1995**) 342
- ¹⁰ J. Farcy, S. Maingot, P. Soudan, J. P. Pereira-Ramos, N. Baffier, Solid State Ionics 99 (**1997**) 61
- ¹¹ B. Orel, Acta Chim. Slov. 44 (1997) 397
- ¹² A. Šurca, B. Orel, Electrochim. Acta 44 (1999) 3051

A. ŠURCA VUK, B. OREL: IR SPEKTROSKOPSKA RAZISKAVA VPLIVA DODATKA ŽELEZA ...

¹³ W. E. Steger, Teubner-Texte zur Physik, 20 (1988) 164

- ¹⁴D. W. Murphy, P. A. Christian, F. J. DiSalvo, J. V. Waszczak, Inorganic Chemistry 18 (1979) 2800
- ¹⁵ L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Spectrochim. Acta 39A (1983) 641
- ¹⁶ P. Clauws, J. Vennik, Phys. Stat. Sol. (b) 76 (1976) 707
- ¹⁷ J. Galy, J. Sol. State. Chem. 100 (1992) 229
- ¹⁸ C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, M. Ménétrier, J. P. Doumerc, Solid State Ionics 69 (1994) 257