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The paper presents the determination of the J-R curve for an aluminium alloy. J-integral value is determined by numerical
simulation of the test prescribed in ASTM E 1820-01. The crack growth ∆a corresponding to the load increment is determined
numerically. The Complete Gurson Model (CGM) based upon void models is adopted as a constitutive relation. This model
describes the nucleation, growth and the coalescence of voids and it considers the constraint effect as well. The advantage of
this approach is when compared with the standard experimental determination of the J-R curve that the number of experiments
is reasonably lower in this case since only the experiments for the determination of the CGM parameters are needed. These
experiments require much less effort and are less time demanding. Numerical simulations for the determination of the J-R curve
were performed for the CT specimen. The finite element method (FEM) code ABAQUS was used for the computation. A
subroutine including the CGM was implemented into the code. Static loading and room temperature were assumed in all
simulations.
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Predstavljena je dolo~itev odvisnosti J-R za aluminijevo zlitino. J-integral je bil dolo~en z numeri~no simulacijo preizkusa po
ASTM E 1820-01. Napredovanje razpoke ∆a pri pove~anju obremenitve je bilo dolo~eno numeri~no. Kot konstitutivna
odvisnost je uporabljen Popoln Gursonov model (CGM) na podlagi propagacije mikrovotlin. Ta model opisuje nastanek, rast in
koalescenco mikrovotlin ter upo{teva tudi vpliv vpetosti. Prednost tega pribli`ka v primerjavi s standardno eksperimentalno
dolo~itvijo odvisnosti J-R je pomembno manj{e {tevilo preizkusov, ker so za CGM potrebni le enostavni preizkusi. Numeri~na
simulacija je bila izvr{ena za CT-preizku{anec. Za izra~un je uporabljena metoda kon~nih elementov (FEM) in program
Abaqus, v katerega je vstavljena podrutina s CGM. Pri vseh preizkusih smo uporabljali stati~no obremenjevanje pri sobni
temperaturi.

Klju~ne besede: aluminij, krivulja J-R, numeri~na simulacija, popoln Gursonov model (CGM), CT-preizku{anec

1 INTRODUCTION

The determination of the J-R curves based upon the
ASTM E 1820-01 standard 2 is rather time consuming
and requires number of experiments. A minimum of 15
specimens must be tested in order to obtain a reliable J-R
curve. Effort has been made to obtain the J-R curves by a
less complicated experiment combined with numerical
simulations. One of these methods is the Single-sample
J-integral Test. For this fracture testing the on-line or
continuous crack monitoring is required. This is
generally performed by the Unloading Compliance
Measurement (ASTM E 813-87) or by Electric Potential
Drop methods. Another possibility for the determination
of the J-R curve is the Load Normalization Technique.
This technique does not require the on-line monitoring
and it is based on the principle of load separation. The
load may be mathematically expressed as a function of
the crack length and the plastic deformation. The
evaluation procedure uses the load-line displacement
diagrams (see e.g. 5). Another method used for the
determination of the J-R curve is the Direct Method 1,
which employs the load-load point displacement records
of a single specimen test in the procedure. Then, the

Direct Method Program, including necessary input data,
calibration functions and elastic-plastic analysis, is
applied. The advantages of this procedure are that it
avoids the accuracy problems when measuring the crack
growth, and the reduction of the testing time. Some
results are presented e.g. in 1. The possibility to
determine the J-R curve without testing the standard
specimens is discussed in this paper. Such approach
requires only simple tensile tests and proper numerical
simulations.

2 EXPERIMENTAL DETERMINATION OF J-R
CURVE

The J-R curve can be determined experimentally
according to the ASTM standard 2. This procedure
requires large number of experiments fulfilling the
assumptions for the specimens used and for the
measurement procedures. Three types of specimens are
used: single edge bend specimen, compact specimen and
disc-shaped compact specimen with fatigue pre-crack.
The J-R curve determination procedure consists of
loading the specimen to a given level and then
determining the J-integral value and the crack length
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increment ∆a. Thus, one point of the J-R curve is
obtained. The minimum number of points to be
determined is 15, whereas each point must be obtained
from measurement on a new specimen subjected to
higher load level, thus exhibiting longer crack length. In
order to measure the crack length, each specimen must
be broken using brittle fracture after cooling.

Since the numerical determination of the J-R curve in
this work is performed by the simulation of experiment,
the basic relations for the J-integral determination and
the procedure of the relevant crack length increment ∆ax

determination necessary for the experiment evaluation
are presented below. CT specimen is used.

For the J-integral determination so-called load-line
displacement curve (P versus v) is used. A typical curve
is shown in Figure 1a, where Apl represents the area
corresponding to plastic work. The J-integral is then
determined as:

J
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where the first part of equation (1) represents the elastic
value of J-integral, K is the stress intensity factor, ν is
Poisson’s ratio, E is Young’s modulus, and Jpl repre-
sents the J-integral plastic component. The stress inten-
sity factor is determined for the relevant force Pi as:
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where f(ai/W) is the compliance function, ai is the crack
length, W is the specimen width, B is the specimen
thickness and BN is the specimen thickness measured at
side grooves. The J-integral plastic component is deter-
mined from the loading-force plastic work as:
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where

η ( ) ( ). . /i ib W− −= +1 12 0 0522

γ ( ) ( ). . /i ib W− −= +1 110 0 76
(4)

The crack length increment is measured optically.
After loading to the given level the specimen is unloaded
and the free crack surfaces are heat tinted. Then the

specimen is cooled and brittle broken. Figure 2 shows
the surfaces of the CT specimen after brittle fracture and
9 locations for the crack increment measurement.

The crack length increment value is determined as:
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where ∆ai = ai – a0. The corresponding values of J and
∆a are recorded into the diagram together with the
construction lines, offset line and two exclusion lines,
which define points from which the J-R curve will be
determined (see Figure 3). The way of drawing the
particular lines is given by the standard 2. The J-R curve
is then the power law regression line:
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determined from points between two exclusion lines,
where k = 1 mm (or k = 0.0394 in). Constants C1 and C2

are determined with the regression analysis. Value JQ is
given by the J-R curve and the offset line crossing point,
∆amin and ∆alimit are given by the J-R curve and the
exclusion lines crossing points. The values ∆amin and
∆alimit and the exclusion lines then determine the
feasible domain of the J values.
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Figure 2: Fracture surfaces (A – brittle breaking surface, B – crack
increment, C – pre-cracked surface, D – notch surface) and 9 points
for the crack length increment measurement
Slika 2: Povr{ine preloma (A – povr{ina krhkega preloma, B –
pove~ek propagacije razpoke, C – za~etna povr{ina razpoke, D –
povr{ina zareze) in 9 to~k meritev pove~ka dol`ine razpoke
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Figure 1: a) Load – line displacement curve (P versus v), b) Plastic
work ∆Apl(i) increment
Slika 1: a) Odvisnost obremenitev-premik obremenitvene ~rte (P v
odvisnosti od v); b) Pove~ek plasti~nega dela ∆Apl(i)

Figure 3: Determination of the J-R curve according to ASTM stan-
dard
Slika 3: Dolo~itev krivulje J-R po ASTM standardu



3 COMPUTATIONAL MODEL

Since the experimental determination of the J-R
curve is not simple, other possibilities for the deter-
mination of this curve are sought. One of these
possibilities is a numerical simulation of the test
prescribed in ASTM standard 2. A proper model
describing the real behaviour of the material during
damage (the crack propagation) is necessary in order to
obtain a reliable J-R curve. Since the stress-strain field
near the crack tip cannot be described by common
constitutive relations the material model used must
include e.g. the effect of triaxiality, the nucleation,
growth and coalescence of voids existing in the zone
with high stress concentration. The above requirements
are fulfilled by certain so-called void models, where the
dilatation plasticity is used. This means that the plasticity
condition is also function of the mean normal stress and
that the volume change takes place, which is not
considered in classical plasticity models.

One of the real plasticity models is the Complete
Gurson Model (CGM), which eliminates the disadvan-
tages of the Gurson Model (GM) and also of the
modified Gurson Model (GTN) implemented by
Tvergaard and Needleman 13.

The CGM yield function has the same form as that of
GTN model:

φ σ σ σ( , , , *)e k
k

M f =

= +








 − − =

σ

σ

σ

σ Μ

e

M

k
k

2
2

1 01
2

1q f h
q

q f* cos ( *) (7)

where σe is the macroscopic von Misses equivalent
stress, σM is the actual yield stress of the matrix
material, σ k

k is the trace of the macroscopic Cauchy
stress tensor, f* is the modified void volume fraction, q1,
q2 are constants introduced by Tvergaard. This model
involves phases of nucleation, growth and coalescence
of voids 13. Contrary to the GTN model, for which 6
parameters must be determined experimentally, only 4
parameters (f0 initial void volume fraction, εN mean
nucleation equivalent plastic strain, s standard deviation
and fN volume fraction of void nucleating particles) are
to be determined. It is particularly important that it is
not necessary to determine experimentally the critical
void volume fracture fC, which was considered to be a
material constant in GTN and, as a matter of fact, it
depends also on the stress state. Zhang eliminated this
disadvantage 15 by the introduction of the Thomason
plastic limit load model into GTN and by this way the
CGM was created. Parameters f0, εN, s and fN are
determined by numerical fitting to the experimental
data, where for the notched bar subjected to tension the
relation load P versus notch diameter reduction ∆d is
recorded. Other CGM parameters are assumed to be q1
= 1.5, q2 = 1.

CGM enables the numerical simulation of the crack
growth and the determination of the crack length

increment ∆a as well as the simulation of the load-line
displacement curve P versus ν (Figure 1), from which
the relevant value of the J-integral can be determined
using relations in equation (1) to equation (4).

4 J-R CURVE NUMERICAL SIMULATION

The problem was solved using the finite element
method programme ABAQUS, into which the CGM was
implemented as a subroutine 15. Static loading and room
temperature were assumed in the analysis. The tested
material was aluminium alloy with material constants:

Young’s modulus E = 6.9122·104 MPa, Poisson’s
ratio ν = 0.315, yield stress σy = 280 MPa. The true
stress-strain diagram was available, too. For the CGM
the following parameter values were used: q1 = 1.5, q2 =
1, f0 = 0.02, εN = 0.1, s = 0.1, fN = 0.01. As stated above,
these parameters were obtained by the numerical
simulation of a tensile test of a notched bar of circular
cross-section. Numerical fitting to the experimental data
of the loading force P versus diameter reduction ∆d was
carried out.
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Figure 4: CT specimen dimensions
Slika 4: Dimenzije CT-preizku{anca

Figure 5: Computational model mesh
Slika 5: Model izra~una



The numerical simulation of the crack growth was
performed for CT specimen having dimensions as given
in Figure 4. The computational model consisting of
isoparametric 8-node elements of solid type is shown in
Figure 5.

The specimen was loaded step-by-step. For each
value of the loading force the relevant values of J-inte-
gral and the crack length increment were determined.
The J-integral value can be numerically determined by
several ways. In some cases the problem is solved as a
plane strain problem and the J-integral is determined
using the relation introduced by Rice 12 (contour inte-
gral). Another possibility is using the domain integral
introduced by Parks 10 and modified by De Lorenzi 4.
Taking into account 3 and our own experience 9 the
J-integral value was obtained by the simulation of the
experiment given by ASTM standard (see 2, part. 2). In
the same way the crack length increment ∆a was
determined.

The J-R curve obtained by the above procedure is
presented in Figure 6. According to ASTM standard 2

the value of JIC was found to be JIC = 28155 J/m2.
To obtain the J-R curve between exclusion lines the

data from 40 points were used. From equation (6) and
for k = 1 mm the relation

J = C1 (∆a)C2 (8)

where C1 = 36012.392 and C2 = 0.178, was obtained.

5 CONCLUSIONS

The presented work presents an approach for the
numerical determination of the J-R curve. The method –
numerical simulation of the experiment for the J-R curve
determination according to ASTM E standard – was
applied to the aluminium alloy.

As a constitutive relation the Complete Gurson
Model was used. It is shown that using this model the

real behaviour of ductile fracture can be described. The
advantage of this method is that for the determination of
the J-R curve only two types of simple experiments are
needed. One for obtaining the stress-strain diagram,
which characterises the material behaviour in both the
elastic and plastic regions, and, the latter for obtaining
the relation loading force P versus diameter reduction ∆a
for the bar of circular cross-section subjected to tensile
load. From this relation the necessary parameters for
CGM are obtained. It is evident that these experiments
can be performed using simple equipment.
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Figure 6: Numerical determination of J-R curve
Slika 6: Numeri~na dolo~itev krivulje J-R
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List of used symbols

a0 /m – original crack length
ai /m – current crack length
Apl /J – area corresponding to plastic work
∆a /m – crack length increment
∆amin, ∆alimit /m – crack lengths determining feasible

domain of the J values
J /(J/m2) – J-integral

Jpl /(J/m2) – J-integral plastic component
K /(MPa · m1/2) – stress intensity factor
B /m – specimen thickness
W /m – specimen width
BN /m – specimen thickness
∆d /m – notch diameter reduction
f – void volume fraction
q1, q2 – constants introduced by Tvergaard
s – standard deviation
E /Pa – Young's modulus
v /m – (load-line) displacement
P /N – force
vpl /m – plastic part of load-line displacement
σe /Pa – macroscopic von Mises equivalent stress
σk

k /Pa – trace of the macroscopic Cauchy stress tensor
σM /Pa – actual yield stress of the matrix material
σy /Pa – yield stress
ν – Poisson’s ratio
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