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The use of two neural networks techniques to model wire electrical discharge machining process (WEDM) is explored in this
paper. Both the back-propagation (BPN) and General Regression Neural Networks (GRNN) are used to determine and compare
the WEDM parameters with the features of the surface roughness. A comparison between the back-propagation and general
regression neural networks in the modeling of the WEDM process is given. It is shown that both the back-propagation and
general regression neural networks can model the WEDM process with reasonable accuracy. However, back propagation neural
network has better learning ability for the wire electrical discharge machining process than the general regression neural
network. Also, the back-propagation network has better generalization ability for the wire electrical discharge machining
process than does the general regression neural network.
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Raziskana je uporaba dveh nevronskih mrez za modeliranje elekroerozijske zi¢ne obdelave (WEDM). Obe metodi: povratnostna
(BPN) in splo$na regresijska nevronska mreza (GRNN), sta uporabljeni za dolocitev in primerjavo VEDM-procesa. Dokazano
je, da sta obe metodi primerni za modeliranje WEDM s sprejemljivo natan¢nostjo. Vendar pa ima povratnostna nevronska mreza
boljSo sposobnost uc¢enja in boljSo sposobnost posplosenja procesa kot splo$na regresijska nevronska mreza.
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1 INTRODUCTION

Manufacturing industry is becoming ever more
time-conscious with regard to the global economy, and
the need for rapid prototyping and small production
batches is increasing. These trends have placed a pre-
mium on the use of new and advanced technologies for
quickly turning raw materials into usable goods; with no
time being required for tooling.! Wire -electrical
discharge machining (WEDM) technology has been
found to be one of the most recent developed advanced
non-traditional methods used in industry for material
processing with the distinct advantages of no thermal
distortion, high machining versatility, high flexibility,
rapid machining and high accuracy of complex parts.?
The degree of accuracy of workpiece dimensions obtain-
able and the fine surface finishes make WEDM particu-
larly valuable for applications involving manufacture of
stamping dies, extrusion dies and prototype parts.
Without WEDM the fabrication of precision workpieces
requires many hours of manual grinding and polishing.?-¢

The most important performance measures in
WEDM are cutting speed, workpiece surface roughness
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and cutting width. Discharge current, discharge capaci-
tance, pulse duration, pulse frequency, wire speed, wire
tension, average working voltage and dielectric flushing
conditions are the machining parameters which affect the
performance measures.*”’

Tosun et al.? determined the effect of machining
parameters on the cutting width and material removal
rate based on the Taguchi method. Tosun and Cogun*
investigated experimentally the effect of cutting
parameters on wire electrode wear. Tosun et al.’
investigated the effect of the cutting parameters on size
of erosion craters (diameter and depth) on wire electrode
experimentally and theoretically. Cogun and Savsar®
investigated the random behaviour of the time-lag
durations of discharge pulses using a statistical model for
different pulse durations, pulse pause durations, and
discharge currents in EDM.

Esme et al.” modeled the surface roughness in
WEDM process using design of experiments and neural
networks. Scott et al.® have developed formulas for the
solution of a multi-objective optimization problem to
select the best parameter settings on a WEDM machine.
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They used a factorial design model to predict the
measures of performances as a function of a variety of
machining parameters. Wang and Rajurkar® have
developed a WEDM frequency monitoring system to
detect on-line the thermal load on the wire to prevent the
wire from rupture. Spur and Schoenbeck!® have investi-
gated a finite element model and they have explained the
impact of a discharge on the anode as a heat source on a
semi-infinite solid whose size and intensity are time-
dependent in WEDM. Tarng et al.!' developed a neural
network system to determine settings of pulse duration,
pulse interval, peak current, open circuit voltage, servo
reference voltage, electric capacitance and wire speed for
the estimation of cutting speed and surface finish.
Spedding and Wang!? presented parametric combination
by using artificial neural networks and they also
characterized the roughness and waviness of workpiece
surface and the cutting speed. Liao et al.!* performed an
experimental study to determine the variation of the
machining parameters on the MRR, gap width and
surface roughness. They have determined the level of
importance of the machining parameters on the metal
removal rate (MRR). Lok and Lee'* compared the
machining performance in terms of MRR and surface
finish by the processing of two advanced ceramics under
different cutting conditions using WEDM. Rama-
krishnan and Karunamoorthy! developed an artificial
neural network with Taguchi parameter design. Tsai et
al.!® relationships between the heterogeneous second
phase and the machinability evaluation of the ferritic SG
cast irons in the WEDM process. Sarkar et al.'” studied
on the features of trim cutting operation of wire elec-
trical discharge machining of y-titanium aluminide.
Caydas et al.'® developed an adaptive neuro-fuzzy
inference system (ANFIS) for modeling the surface
roughness in WEDM process.

As indicated in the previous studies, most of the
research works are focused on the effect of machining
parameters, discharge energy, theory and experimental
verification crater formation on the wire electrode. The
present study focused on the comparative modeling and
prediction of surface roughness to compare the techni-
ques of back propagation network (BPN) and general
regression neural network (GRNN).

2 EXPERIMENTAL DETAILS

As shown in Figure 1, the experimental studies were
performed on an Acutex WEDM machine tool. Different
settings of pulse duration (f), open circuit voltage (V),
wire speed (S) and dielectric flushing pressure (p) were
used in the experiments. Table feed rate (8.2 mm/min),
pulse interval time (18 us), and wire tension (1800 g) are
kept constant during the experiments’.

AIST 4340 steel plate was used as a workpiece
material with (150 x 150 x 10) mm dimensions. CuZn37
Suncut brass wire with 0.25 mm diameter and tensile
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Figure 1: Acutex WEDM used in the experiments’
Slika 1: Acutex WEMM, uporabljen za preizkuse’

strength of 900 N/mm? was used in the experiments.
Workpiece average surface roughness (R,) measurements
were made by using Phynix TR—100 portable surface
roughness tester. Cut-off length (1) and traversing length
() were set as 0.3 mm and 5 mm, respectively. Pulse
duration, open circuit voltage, wire speed and dielectric
flushing pressure were selected as input parameters and
surface roughness (R,) was selected as an output para-
meter’.

Four measurements were made and their average was
taken as R, value for a machined work surface. After
collecting the experimental results both techniques
namely back propagation neural network (BPN) and
general regression neural network (GRNN) techniques
were carried out to predict surface roughness (R,).

3 ARTIFICIAL NEURAL NETWORKS (ANN)

It is well known that modeling the relationships
between the input and output variables for non-linear,
coupled, multi-variable systems is very difficult. In
recent years, neural networks have demonstrated great
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Figure 2: A non-linear, coupled, and multi-variable system19
Slika 2: Nelinearen, povezan in multivariabilni sistem?!?
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potential in the modeling of the input—output relation-
ships of complicated systems.'*?° Consider that X = {x,,
X2..., Xn} 18 the input vector of the system where m is the
number of input variables and Y = {yi, y>..., y,} is the
corresponding output vector of the system where 7 is the
number of output variables!® as shown in Figure 2. In
this section, the use of back-propagation and general
regression networks to construct the relationships
between the input vector X and output vector Y of the
system will be explored.

3.1 Back-Propagation Networks (BPN)

The back-propagation network is composed of many
interconnected neurons that are often grouped into input,
hidden and output layers. The neurons of the input layer
are used to receive the input vector X of the system and
the neurons of the output layer are used to generate the
corresponding output vector Y of the system. The
back-propagation network used in this study is shown in
Figure 3. For each neuron a summation function for all
the weighted inputs are calculated as:

net'j‘. =2w}f0ik’l (1)
j

where net; is the summation function for all the inputs
of the j-th neuron in the k-th layer, w¥;; is the weight
from the i-th neuron to the j-th neuron and o/#! is the
output of the i-th neuron in the (k—1)-th layer.

Setting 5-hidden layers resulted in lowest error
between predicted and experimental results. Therefore,
in the present work, 4-inputs, 5-hidden layer, 1 output
layer (4 : 5 : 1 model) back propagation neural network
has been used. The used BPN algorithm is shown in
Figure 3.

As shown in Eq. (1), the neuron evaluates the inputs
and determines the strength of each one through its
weighting factor, i.e. the larger the weight between two
neurons, the stronger is the influence of the connection.!
The result of the summation function can be treated as an
input to an activation function from which the output of
the neuron is determined. The output of the neuron is

INPUT LAYER

HIDDEN LAYER

Pulse duration

Open circuit
voltage

OUTPUT LAYER

Surface roughness

Wire speed

Flushing pressure

Figure 3: BPN network used for modeling
Slika 3: BPN mreza, uporabljena za modeliranje
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then transmitted along the weighted outgoing connec-
tions to serve as an input to subsequent neurons. To
modify the connection weights properly, a supervised
learning algorithm involving two phases is employed.?!
The first is the forward phase which occurs when an
input vector X is presented and propagated forward
through the network to compute an output for each
neuron.'*?° Hence, an error between the desired output y;
and actual output o; of the neural network is computed.'
The summation of the square of the error E can be
expressed as:

E=320,-0,)’ @

The second is the backward phase which is an
iterative error reduction performed in a backward direc-
tion. To minimize the error between the desired and
actual outputs of the neural network as rapidly as possi-
ble, the gradient descent method, adding a momentum
term,?! is used. The new incremental change of weight
Awky(n + 1) can be expressed as:

oE .
- FW +05Awﬁ (n) 3)

ji

Aw’ (n+1) =

where 7 is the learning rate, « is the momentum coeffi-
cient and n is the index of iteration. Through this
learning process, the network memorizes the relation-
ships between input vector X and output vector Y of the
system through the connection weights.!9-2!

4 GENERAL REGRESSION NEURAL
NETWORKS (GRNN)

The General Regression Neural Networks (GRNN)
introduced by Donald Specht in 1990 is a memory-based
feed forward neural network based on the approximate
estimation of the probability density function from
observed samples using Parzen-window estimation.?? It
approximates any arbitrary function between input and
output vectors. This approach removes the necessity to
specify a functional form of estimation.

The method utilizes a probabilistic model between an
independent random vector X (input) and a dependent
scalar random variable Y (output). Let x and y be the
particular measured values of X and Y, respectively, and
&(x, y) is the joint continuous probability density function
of X and Y. A good choice for a non-parametric estimate
of the probability density function g is the Parzen
window estimator as proposed by Parzen and performed
for multidimensional cases by Cacoullos.?”? Given a
sample of n real D dimensional x; vectors and corres-
ponding scalar y; values, the estimate of joint probability
density in GRNN is given by;

L 1 1 (r=x) (x—x,) G-y)
g(x,y)Wn;[eXP( 207 ]exp[ 20° ]:|

“4)
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where o is the window width of a sample probability,
called the smoothing factor of the kernel?4. The
expected value of Y given x (the regression of Y on x) is
given by;

_[Y-g(x, Y)dY
ElYal="—— (5)
[ etx, n)ay

Using Eq. (4), Eq. (5) becomes;

2Ly, expa)]

$(x) = Elyxl="F——— (6)
3 expid,)

where d; is the distance between the input vector and the
i training vector, and is given by;
. mx) (-x)
i = 20° ™

The estimate y(x) is thus a weighted average of all the
observed y; values where each weight is exponentially
proportional to its Euclidean distance from x.

As shown in Figure 4, the structure of the GRNN
consists of 4 layers; the input layer, the hidden (pattern)
layer, the summation layer and the output layer. As a
preprocessing step, all input variables of the training data
are scaled. Then, they are copied as the weights into the
pattern units.

As a preprocessing step, all input variables of the
training data are scaled. Then, they are copied as the
weights into the pattern units. The summation layer has
two units that can be denoted as the numerator and the
denominator of Eq. (6). The output layer gives the
estimate of the expected value of y(x). If y and y are the
vector variables, the results above are generalized by

Pulse duration Opan circuit voltage Wire spaad  Dielectric flushing pressure
X, X, x X,

ool L
o

J69 Output Layer
Surface roughness

Figure 4: Constructed GRNN network
Slika 4: Zgrajena GRNN-mreza
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adding with one summation unit for each component of y
in the output layer.

The only adjustable parameter of the network is o,
the smoothing factor for the kernel function. It is critical
to decide an optimum value for o. The larger values of
this factor cause the density to be smooth, and y(x) then
converges to the sample mean of the observed y;. On the
other hand, when o is chosen very small, the density is
forced to have non-gaussian shapes. Then, the oscillatory
points have a bad effect on the estimate. All values of y;
are taken into account where the points closer to x are
given heavier weights, if the optimum value of o is
selected.?*?¢ Therefore, in this study, o was chosen as
0.57 due to the optimum value of success rate that was
found after iterative calculation of ¢ values between 0.1
and 0.9.

The main advantage of GRNN according to other
techniques is fast learning. It is a one-pass training
algorithm, and does not require an iterative process. The
training time is just the loading time of the training
matrix. Also, it can handle both linear and non-linear
data because the regression surface is instantly described
everywhere, even just one sample is enough for this.
Thus, other existing pattern nodes tolerate faulty
samples. Another advantage is the fact that adding new
samples to the training set does not require re-calibration
of the model. As the sample size increases, the estimate
surface converges to the optimal regression surface.
Thus, it requires many training samples to span the
variation in the data and all these to be stored for the
future use. Solely, this causes a trouble of an increase in
the amount of the computation to evaluate new points. In
the course of time, highly improvements in the speed of
the computer’s processing power prevent this being a
major problem. Furthermore, this also can be overcome
by applying the various clustering techniques for
grouping samples that each center is represented by this
group of samples.?”2¢ However, there is only one dis-
advantage that there is no intuitive method for choosing
the optimal smoothing factor.

5 RESULTS AND DISCUSSIONS

In this study, twenty-eight set of data under different
process condition was used for training and testing of the
BPN and GRNN. Sixteen of them were used as a training
purpose and the rest were used as testing purposes.
Table 1 shows the design matrix and training set used for
BPN and GRNN analysis.

Testing the validation of BPN and GRNN results was
made using the input parameters according to the design
matrix given in Table 2.

These comparisons have been depicted in terms of
percentage error in Figure 5 for validation set of experi-
ments. From Table 2 it is evident that for our set of data
the BPN result predicts the surface roughness nearer to
the experimental values than the GRNN results. But,
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Table 1: Neural network training set’

Tabela 1: Podatki za trening nevronske mreze’

WEDM input Parameters Output

Exp. no t/ns VIV S/(mm/min) pl(kg/cm?) Ry/um
1 200 300 12 16 2.12
2 200 60 4 16 1.13
3 900 60 4 6 2.14
4 200 60 12 16 1.24
5 200 300 12 6 2.32
6 200 300 4 16 1.98
7 900 60 12 16 2.15
8 900 300 12 6 3.85
9 200 300 4 6 2.10
10 900 300 4 16 3.24
11 900 60 12 6 2.26
12 900 300 12 16 3.65
13 900 60 4 16 2.01
14 200 60 4 6 1.18
15 900 300 4 6 3.55
16 200 60 12 6 1.24

Table 2: Test and comparison of BPN and GRNN results
Tabela 2: Preizkusi in primerjava BPN- in GRNN-rezultatov

Modeling
. Back Propagation General Regression
Exp. No WEDM input parameters Neural Network (BPN) [Neural Network (GRNN)
t/ns VIV S/(mm/min)| p/(kg/cm?) Ry/um predicted error predicted error
1 300 80 4 6 1.30 1.26 3.08 1.38 -6.15
2 400 90 5 8 1.50 1.36 9.33 1.55 -3.33
3 500 150 6 10 2.08 2.02 2.88 1.96 5.77
4 700 250 10 14 3.18 348 -9.43 3.22 -1.26
5 350 60 12 16 1.29 1.24 3.88 1.43 -10.85
6 450 70 5 16 1.58 1.53 3.16 1.50 5.06
7 550 100 8 11 2.08 2.02 2.88 1.88 9.62
8 750 180 4 6 2.92 3.11 -6.51 2.72 6.85
9 850 200 10 8 3.27 347 -6.12 3.14 3.98
10 200 300 12 8 2.23 2.37 -6.28 2.31 -3.59
11 250 300 4 10 1.96 2.00 -2.04 2.14 -9.18
12 300 250 6 20 1.89 1.81 4.23 2.02 -6.88
Average error: 4.99% | Average error: 6.04%
CPU time = 2.3 min | CPU time = 0.074 sec
15 4 ...#... Experimentnumber vs BPN emor +0
—&— Experiment number vs GRNN error :
— -A— Experiment number vs actual surface roughness - 25 ®  Eperimental vs BPN (R2=0.99)
104 QE;- ) B Experimental vs GRNN (R2=0.96)
\q
3 P
54 § 3.0 4
2 0- 8 25
N <
-5 T‘:E 204
104 g 154
-1 . ; : . . . 10 ' i i i
0 2 4 éxmmm nfmw 10 12 14 1.0 15 20 25 30 35
Figure 5: BPN and GRNN errors in prediction of the surface rough- Predicted surface foughness, Re/um
ness Figure 6: Comparison of predicted and experimental results
Slika 5: BPN- in GRNN-napake pri napovedi hrapavosti povrsine Slika 6: Primerjava napovedanih in eksperimentalnih rezultatov
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GRNN is much faster than BPN with the CPU times of
0.074 s and 2.3 min respectively. In the prediction of
surface roughness values the average errors for BPN and
GRNN are calculated as 4.99 % and 6.04 % respectively.

The value of the multiple coefficient of R? is obtained
as 0.99 for BPN and 0.96 for GRNN which means that
the fitted line is very close to the experimental results.
Figure 6 represents the comparison of predicted (both
BPN and GRNN) and actual results. Both BPN and
GRNN results showed that the predicted values have
been very close to experimental values.

6 CONCLUSIONS

The prediction of optimal machining conditions for
the required surface finish and dimensional accuracy
plays a very important role in the process planning of the
wire erosion discharge machining process. This paper
has described a neural network approach and comparison
of Back Propagation Networks (BPN) and General
Regression Neural Networks (GRNN) networks for the
modeling of wire electrical discharge machining process
using small set of data. Both the BPN and GRNN
networks were used to construct the complicated
relationships between the process parameters and the
surface roughness. The experimental results has showed
that the BPN network has better learning ability (with
average error of 4.99 % and multiple coefficient of R? of
99 %) for the wire electrical discharge machining
process than the GRNN (with average error of 6.04 %
and multiple coefficient of R? of 0.96) network. Training
of BPN network consumed more CPU time (elapsed
time 2.3 min) than the GRNN (elapsed time 0.074 s). In
addition to this, the back propagation network has better
generalization ability for the wire electrical discharge
machining process than the general regression neural
network modeling.
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