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This study reports the performance of different artificial neural network (ANN) training algorithms in the prediction of
mechanical properties. First, an experimental investigation was carried out on the mechanical behavior of an A356 composite
reinforced with B4C particulates and then an ANN modeling was implemented in order to predict the mechanical properties,
including the yield stress, UTS, hardness and elongation percentage. After the preparation of the training set, the neural network
was trained using different training algorithms, hidden layers and the number of neurons in hidden layers. The test set was used
to check the system accuracy for each training algorithm at the end of the learning. The results show that the
Levenberg-Marquardt learning algorithm gave the best prediction for the yield stress, UTS, hardness and elongation percentage
of the A356 composite reinforced with B4C particulates.

Keywords: composite, hardness, mechanical properties, ANN

V tem delu smo najprej opredelili mehanske lastnosti, vklju~no z mejo plasti~nosti, natezno trdnostjo, trdoto in raztezkom
kompozita A356, oja~enega z delci B4C, in nato uporabili kombinacijo umetne nevronske mre`e in metode kon~nih elementov.
Po pripravi treningpostavitve je bila nevronska mre`a preizku{ena z uporabo razli~nih algoritmov, skritih plasti in {tevila
nevronov v skritih plasteh. Treningpostavitev je bila uporabljena za preverjanje natan~nosti za vsak algoritem na koncu u~enja.
Rezultati ka`ejo, da da Levenberg-Marquardtov u~ni logaritem najbolj{o napoved meje plasti~nosti, natezne trdnosti, trdote in
raztezka za kompozit A356, ki je oja~en z delci B4C.

Klju~ne besede: kompozit, trdota, mehanske lastnosti, ANN

1 INTRODUCTION

Large quantities of castings are made each year from
the aluminium alloy A356 (also known as Al-7Si-
0.3Mg). This alloy is one of the most popular alloys used
in industry due to its high fluidity and good "casta-
bility"1–5.

The addition of hard particles to a ductile metal
matrix produces a material whose mechanical properties
are intermediate between the matrix alloy and the
ceramic reinforcement. The casting cooling rate, the
reinforcement volume fraction, size, shape, and spatial
distribution are the most important parameters, playing a
role in the enhancement of the composite’s mechanical
properties. A stronger adhesion at the particle/matrix
interface improves the load transfer, increasing the yield
strength and stiffness, and delays the onset of
particle/matrix de-cohesion6.

An ANN is a logical structure with multi-processing
elements, which are connected through interconnection
weights. The knowledge is represented by the inter-
connection weights, which are adjusted during the learn-
ing phase. This technique is especially valuable in

processes where a complete understanding of the
physical mechanisms is very difficult, or even impossible
to acquire, as in the case of material properties where no
satisfactory analytical model exists7–14.

The aim of this study was to investigate the
prediction performance of various training algorithms
using a neural network computer program for the
mechanical properties of the A356 composite reinforced
with B4C particulates. The results showed that the
Levenberg-Marquardt learning algorithms gave the best
result for this study.

2 EXPERIMENTAL

In this study, A356 was used as the matrix material
and different volume fractions of B4C particles (1 % to
15 % B4C) with particle sizes ranging from 1 μm to 5 μm
were used as the reinforcements.

The melt-particle slurry was produced by a mecha-
nical stirrer. Approximately 5 kg of A356 alloy was
charged into the graphite crucible and heated up to a
temperature above the alloy’s melting point (750 °C).
The graphite stirrer, fixed on the mandrel of the drilling
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machine, was introduced into the melt and positioned
just below the surface of the melt. It was stirred at
approximately 600 r/min and 750 °C. Then the step
casting was poured into the CO2-sand mould.

Microscopic examinations of the composites and
matrix alloy were carried out using an optical micro-
scope. The porosity measurements of the composites
were obtained using Archimedes’s method. Hardness
and tensile tests were used to assess the mechanical
behavior of the composites and the matrix alloy.

2.1 Prediction of cooling rate and temperature gra-
dient with EEM

The numerical model is applied to simulate the
solidification of binary alloys; the mathematical
formulation of this solidification problem is given15:
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where �/(kg/m3) is the density, K/(W/(m K)) is the
thermal conductivity, C/(J/(kg K)) is the specific heat,
q/(W/m3) is the rate of energy generation, T/K is the
temperature, and t/s is the time.

The release of latent heat between the liquidus and
solidus temperatures is expressed by:
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where L/(J/kg) is the latent heat and fs is the local solid
fraction.

The fraction of solid in the mushy zone is estimated
by the Scheil equation, which assumes perfect mixing in
the liquid and no solid diffusion. With the liquidus and
solidus having constant slopes, fs is then expressed as:
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where Tf/K is the melting temperature, TLiq/K is the
liquidus temperature and k0 is the partition coefficient.
Then15:
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The latent heat released during the solidification of
the remaining liquid of eutectic composition was taken
into account by a device that considers a temperature
accumulation factor.
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where C’ can be considered as a pseudo-specific heat
given by:
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where the subscripts L, S and M refer to liquid, solid
and mushy, respectively. The other properties, such as
the thermal conductivity and the density in the mushy
zone, are described in a similar way to the specific heat:
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The finite-element method (FEM) was used for
discretization. Based on the above transient-temperature
model, the FEM method is used to calculate the transient
temperature, cooling rate and temperature gradient (G).

2.2 Neural network training algorithms

There are various training algorithms used in neural
network applications. However, it is difficult to predict
which of these will be the fastest one for any problem.
Generally, it depends on some factors: the structure of
the networks, in other words, the number of hidden
layers, weights and biases in the network, aimed error
during the learning, and application area, for instance,
pattern recognition or classification or the function
approximation problem. However, the data structure and
the uniformity of the training set are also important
factors that affect the system accuracy and performance.
Some of the famous training algorithms are as
follows7–14,16–26:

Resilient back propagation (Rprop): is a network
training function that updates weight and bias values
according to the Rprop algorithm.

Random order incremental training with learning
functions: trains a network with weight and bias learning
rules using incremental updates after each presentation
of an input. Inputs are presented in a random order.

Gradient descent back propagation: is a network
training function that updates weight and bias values
according to the gradient descent.

BFGS quasi-Newton back propagation: is a network
training function that updates weight and bias values
according to the BFGS quasi-Newton method.

Bayesian regularization: is a network training
function that updates the weight and bias values accord-
ing to LM optimization. It minimizes a combination of
squared errors and weights, and then determines the
correct combination so as to produce a network that
generalizes well. The process is called Bayesian regulari-
zation.

In the analysis of the performance of various training
algorithms, the same prepared learning and test set were
used in the training processes of each learning algorithm.
The performance analyses were made from the
viewpoint of training duration, error minimization and
prediction achievement. The neural network predictions
were directly compared with the experimentally obtained
data to evaluate the learning performance. The mean
square error (MSE), which is a statistical and scientific
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error-computation method, was used to analyze the
error25.

3 RESULTS AND DISCUSSION

Microscopic examinations were carried out on the
metal-matrix composite. Figure 1 shows that the B4C
particles were distributed between the dendrite branches
and were frequently clustered together, leaving the
dendrite branches as particle-free regions in the material.

Figure 2 shows the variation of porosity with B4C
content. It indicates that an increasing amount of
porosity is observed with increasing the volume fraction

of the composites. The porosity level increased, since the
contact surface area was increased27–31.

Figure 3 displays the results of the hardness tests.
The hardness of the MMCs increases with the volume
fraction of particulates in the alloy matrix. The higher
hardness of the composites could be attributed to the fact
that the B4C particles act as obstacles to the motion of
dislocations32–36. Figure 4 shows the typical stress-strain
curves obtained from uniaxial tension tests. The consi-
derable increase in strain-hardening observed during the
plastic deformation of composites is rationalized by the
resistance of the hard reinforcing particles to the slip
behavior of the Al matrix. The elongation to fracture of
the composite materials was found to be very low, and no
necking phenomenon was observed before fracture. On
the other hand, the elongation to fracture of the
un-reinforced Al alloy was about 15 %.

The input and output data set of the model is
illustrated schematically in Figure 5. In Figure 6, the
obtained MSE values for training data were given for
each training algorithm. The obtained error values for
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Figure 4: Stress-strain curves for volume fractions Al/ 3 % B4C (B),
Al/ 7 % B4C (C), Al/ 10 % B4C (D), Al/ 12 % B4C (M) and Al/ 15 %
B4C (N)
Slika 4: Odvisnosti napetost – deformacija za volumenske dele`e Al/
3 % B4C (B), Al/ 7 % B4C (C), Al/ 10 % B4C (D), Al/ 12 % B4C (M)
in Al/ 15 % B4C (N)

Figure 2: Variations of porosity as a function of the volume fraction
of B4C
Slika 2: Spremembe poroznosti v odvisnosti od volumenskega dele`a
B4C

Figure 3: Variations of the hardness value of the samples as a function
of the volume fraction of B4C
Slika 3: Spremembe trdote vzorcev v odvisnosti od volumenskega
dele`a B4C

Figure 1: Typical optical micrographs: a) the composite with the
volume fraction of B4C 4 %, b) the composite with 13 % B4C
Slika 1: Tipi~en opti~ni posnetek: a) kompozit z volumenskim dele-
`em B4C 2 %, b) kompozit s 15 % B4C



different numbers of neurons in the hidden layers and the
number of hidden layers were analyzed and presented
graphically. This figure also gives information about the
accuracy of five famous training algorithms depending
on the number of neurons in the hidden layers and the
number of hidden layers. It is evident from this figure
that the smallest error value was obtained by using the
Levenberg-Marquardt training algorithm with two
hidden layers and eight neurons (MSE = 6.4). BFGS
quasi-Newton back propagation with three hidden layers
and nine neurons in the hidden layers follows the
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Figure 6: Evaluation of the training performance of the networks for different training algorithms according to the MSE values with: a) one
hidden layer, b) two hidden layers, c) three hidden layers and d) four hidden layers
Slika 6: Ocena parametrov treninga mre`e za razli~ne treningalgoritme po MSE-vrednostih za: a) eno skrito plast, b) dve skriti plasti, c) tri skrite
plasti in d) {tiri skrite plasti

Figure 5: Schematic representation of the neural network architecture
Slika 5: Shemati~en prikaz nevronske arhitekture

Figure 7: Comparison between the experimental and predicted values:
a) elongation percentage, b) UTS
Slika 7: Primerjava med eksperimentalnimi in predvidenimi vrednost-
mi za: a) raztezek in b) natezno trdnost



Levenberg-Marquardt algorithm (MSE = 8.1), and thirdly
the gradient descent back propagation including four
hidden layers and six neurons in the hidden layers has
clearly much more error than the previous two cases
(MSE = 14.4). The most error was obtained from the
Resilient back-propagation training algorithm and the
Random order incremental training with learning
functions. The Levenberg-Marquardt training algorithm
was found to be the fastest training algorithm; however,
it requires more memory with the same error conver-
gence bound compared to the training methods25. MSE is
a good criterion to have information about learning
performance. The iterations were continued until it is
decided that the minimum MSE error is obtained.

Figure 7 shows the efficacy of the optimization
scheme by comparing the ANN results with the
experimental values. There is a convincing agreement
between the experimental values and the predicted
values for UTS and the elongation percentage of the
A356 composite reinforced with B4C particulates for the
Levenberg-Marquardt training algorithm.

4 CONCLUSION

1) The mechanical properties modeling was developed
to predict the hardness, yield stress, ultimate tensile
strength and elongation percentage.

2) The effect of various training algorithms on the
prediction of the mechanical properties of the
fabricated A356 composite reinforced with B4C
particulates was investigated. The prediction of the
ANN model was found to be in good agreement with
the experimental data.

3) According to the results, the Levenberg-Marquardt
learning algorithm gave the best prediction for
hardness, yield stress, ultimate tensile strength and
elongation percentage for the A356 composite. It is
believed that an ANN with two hidden layers and
eight neurons (MSE = 6.4) gave an accurate
prediction of the mechanical properties of the
fabricated A356 composite reinforced with B4C
particulates.
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