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In the present research, ceramic nanoparticles were added to the Al-Si aluminum alloy using the casting method. Experimental
characterization of the mechanical properties showed that an incorporation of the nanoparticles improved the hardness and
strength of the composites. This paper also reports a successful development of an effective approach based on the combination
of a parallel particle-swarm optimization and FEM methods to determine the optimum conditions of the Al-matrix
nanocomposites in terms of the microstructure and mechanical properties. It has been shown that a parallel particle swarm
performs well in the optimization of nanocomposite materials.
Keywords: nanocomposites, Al, optimum conditions

V tej raziskavi so bili dodani kerami~ni nanodelci v zlitino Al-Si z uporabo metode pri ulivanju. Eksperimentalna
karakterizacija mehanskih lastnosti je pokazala, da vklju~itev nanodelcev izbolj{a trdoto in trdnost kompozitov. Ta ~lanek
predstavlja tudi uspe{en razvoj u~inkovitega pribli`ka, ki temelji na kombiniranju teorije vzporednih rojev delcev in
FEM-metod, za dolo~anje optimalnih mikrostrukturnih in mehanskih lastnosti nanokompozitov na osnovi aluminija. Pokazalo
se je, da je teorija vzporednih rojev delcev u~inkovita pri optimiranju nanokompozitnih materialov.
Klju~ne besede: nanokompoziti, Al, optimalni pogoji

1 INTRODUCTION

Despite a great importance of aluminum alloys as
structural materials1–4, their use in the automotive
applications has been limited due to their inferior
strength, rigidity and wear resistance, as compared to the
ferrous alloys. For many applications it is necessary to
improve their mechanical behavior and wear resistance.
However, discontinuously-reinforced metal-matrix
composites (MMCs) offer a reduced mass, high stiffness
and strength, and improved wear resistance. Specifically,
the possibility of substituting the iron-based materials
with the Al-matrix composites (AMCs) in the automo-
tive components provides a potential for a considerable
weight reduction5,6. The particle and short-fiber
reinforced MMCs have unique and desirable thermal and
mechanical properties7. When compared to the
unreinforced metals and alloys, MMCs have higher
strength, Young’s modulus8–10, wear resistance11, fatigue
resistance12, and lower thermal expansion13. They are
also relatively inexpensive, compared to their conti-
nuous-fiber reinforced counterparts, and can be pro-
cessed with conventional techniques14–18.

During the last two decades a lot of research has been
focused on AMCs. A wide variety of fabrication techni-
ques have been explored, which include vapor-state
methods, liquid-phase methods (infiltration of preforms,

rheocasting/thixoforming, melt stirring and squeeze
casting) and solid-state methods (powder forming and
diffusion bonding)19–23.

The melt processing, which involves a stirring of
ceramic particles into a melt, has a few important
advantages including a better matrix-particle bonding, an
easier control of the matrix structure, simplicity, low cost
of processing, nearer net shape and a wide selection of
materials for this fabrication method19. A wide range of
particle sizes has been used for the reinforcement of
MMCs. Normally, the micron-sized particles are used to
improve the ultimate tensile and yield strengths of the
metal. However, the ductility of MMCs deteriorates
significantly with a high ceramic-particle concentration
24,25.

Metal-matrix nanocomposites (MMNCs) are a new
class of nanostructured materials, consisting of nano-
scale particles used as reinforcements. MMNCs are
being considered for many applications because of their
improved specific strength, wear resistance, and retained
ductility as compared to monolithic alloys26. Zhao et al.27

characterized the properties and deformation behavior of
the Al-matrix composites reinforced with the Al2O3

nanoparticles. It is reported that the elongation, the
ultimate tensile strength and the yield strength of
nanocomposites are enhanced with an increase in the
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particle-volume fraction, and are markedly higher than
that of the Al composites synthesized with the micro-
sized particles. Significant developments have been
achieved with the nano-SiC/AMCs system processed via
the ultrasonic method. The strength of nanocomposites
increases with an increase in the volume percentage of
the ceramic phase28,29.

In recent years, some mechanisms were designed to
increase the diversity in order to prevent premature
convergence to the local minimum. Silva et al. presented
a predator-prey model to maintain the population
diversity. Zhang proposed to re-initialize the velocities of
all the particles at a predefined extinction interval, which
simulated the natural process of a mass extinction in the
fossil record. Krink proposed several collision strategies
to avoid crowding of the swarm. Lovbjerg used self-
organized criticality to add diversity30–38. In recent years,
meta-heuristic algorithms have been applied to a variety
of complex problems in order to obtain quality solutions
within acceptable computation time. Proposed by
Kennedy and Eberhart39, particle-swarm optimization
(PSO) has been drawing attention of many researchers.
This algorithm is mostly used to simulate the social
behavior of animals such as birds and fish in the nature.
Individuals in a flock of birds or a school of fish
exchange previous experience and make adjustments
accordingly so that they can move toward the objective.
The concept is adopted by PSO in searching for optimal
solutions.

PSO has been widely applied in many research areas
and real-world engineering fields. Examples include task
assignment and scheduling, data clustering, power-flow
analysis, pattern recognition, roundness-measurement
demand forecast, financial decisions, product plans and
layout design. It has been demonstrated that PSO
performs well in many optimization problems. However,
it was observed that the algorithm did not perform well
at times. The conversion may be slow when solving
complex problems and the search can be occasionally
trapped in the local optima. Many attempts have been
made to improve the algorithm’s efficiency and robust-
ness40–44.

Although variations of PSO have included different
strategies and parameters, all of them follow the same
principle of the swarm intelligence. Therefore, all
variations show similar features of social behavior.
Within a swarm individuals are relatively simple, but
their collective behavior becomes quite complex. A
group of particles in a swarm move around in a defined
search space to find the optimum. Each particle relies on
direct and indirect interactions and cooperation with the
other particles to determine the next search direction and
step size, so the swarm will move around and gradually
converge toward the candidates of the global optima or
the local optima. Thus, the center of the swarm is pro-
bably near the optimum35–44. While this position changes

during the search process, it can supply very useful
information for capturing the optimum.

In comparison with microcomposites, the research on
nanocomposites is still limited. The key reason is
perhaps related to the difficulty in synthesizing these
composites due to their high viscosity, poor wettability
of the nanoparticles in the metal matrix, and a large
surface-to-volume ratio.

Therefore, the present study aims at the development
of the stir-casting process required for producing
nanomatrix composites and investigating the PSO
performance with respect to the microstructure and
mechanical properties of the nano-Al2O3-reinforced
A356-alloy-matrix composites.

2 EXPERIMENTAL PROCEDURE

Nano-Al2O3 particles were used as reinforcement
with an average particle size of 50 nm and the chemical
composition that is listed in Table 1. The aluminum
alloy A356 was used as the matrix material due to its
good castability. The chemical composition of A356 is
included in Table 2. In order to improve the wettability
of the particles, 1 % of Mg was added to the original
composition of A356. The Al2O3-particle reinforcement
is characterized by its good thermal stability, high
hardness and wear resistance. In addition, nano-Al2O3

particles were chosen because, up to now, Al2O3 is one of
the most commonly used particle reinforcements in Al
MMCs due to its low cost and availability. The
metal-matrix composites reinforced with volume
fractions (0.5, 1, 1.5, 2, 2.5 ... 5 ) % of Al2O3 have been
produced by using a vortex method. A detailed
description of the nanocomposite processing was
discussed in the previous work45. Composite slurry was
step cast into a CO2-sand mould. The microstructure was
investigated with optical microscopy (Prior N334) and
transmission electron microscopy (TEM, Philips
CM20T, 200 kV, EDX). The amount of the porosity in
the cast alloy and in the composite was determined by
comparing the measured density with their theoretical
density. The compression and tension tests were used to
assess the mechanical behavior of the composites.
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Table 1: Chemical composition of alumina
Tabela 1: Kemijska sestava aluminijevega oksida

Other
magnetic
materials

CaO TiO2 Fe2O3
�-Alu-
mina Element

0.02 1.1 1.8 0.8 93 w/%

Table 2: Chemical composition of A356
Tabela 2: Kemijska sestava A356

Ni Ti Zn Mn Mg Cu Fe Si Al Ele-
ment

0.05 0.01 0.02 0.02 0.38 0.001 0.10 7.5 Bal-
ance w/%



3 PARALLEL PSO

PSO was first introduced by Kennedy and Eberhart39.
The algorithm is driven by the social behavior of a bird
flock and can be viewed as a population-based stochastic
optimization algorithm. In PSO, the group is a
community composed of individuals called particles, and
all the particles fly around in a multidimensional search
space. Each particle adjusts its own "flight path"
according to its flying experience as well as the flying
experience of the neighboring particles. This process can
be generally described with a group of vectors denoted
as Xi, Vi, Pi. Let x and v denote a particle’s position and
velocity in a search space. The ith particle can be
represented as Xi = (xi1, xi2 ... xiD) in the D-dimensional
search space. The best previous position of the ith
particle is recorded and represented as Pi = (pi1, pi2 ... piD)
(i = 1, 2 … m). The index of the best particle in the
group, i.e., the particle with the smallest function value,
is represented by Pg = (pg1, pg2 ... pgD), while the velocity
of the ith particle is represented by Vi = (vi1, vi2 ... viD).
According to Bratton and Kennedy, the modified
velocity and position of each particle can be manipulated
according to the following equations:
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where c1 and c2 are positive constants known as accele-
ration coefficients; X is the constriction factor that
controls the velocity’s magnitude; r1 and r2 are the two
random numbers within the range [0, 1]; and w is the
inertia factor that linearly decreases from 0.9 to 0.4
throughout the search process. In addition, the velocities
of the particles are confined within [Vmin, Vmax]D. If a
velocity element exceeds the threshold Vmin or Vmax, it is
set equal to the corresponding threshold.

Although several modifications to the original swarm
algorithm have been made to improve its performance
and adapt it to specific types of problems, the parallel
version has not been previously implemented.

3.1 Concurrent Operation and Scalability

The algorithm should operate in such a way that it
can be easily decomposed for a parallel operation on a
multi-processor machine. Furthermore, it is highly
desirable that it is scalable. This implies that the nature
of the algorithm should not place a limit on the amount
of the computational nodes that can be utilized39–44.

3.2 Coherence

Parallelization should have no adverse affect on the
algorithm’s operation. Calculations sensitive to the
program order should appear to have occurred in exactly
the same order as in the original formulation, leading to
the exact same final answer as obtained by a serial
implementation38–42.

3.3 Optimization

1. Evaluate all i particle-fitness values fi
k in parallel

using design-space coordinates xi
k.

2. Perform barrier synchronization of all fitness-evalu-
ation results.

3. If fi
k � fi

best then fi
best = fi

k, pi
k = xi

k.
4. If fi

k� fg
best then fg

best = fi
k, pg

k = xi
k.

5. Update all particle velocities vi
k for i = 1, ..., p.

6. Update all particle positions xi
k for i = 1, ..., p.

7. Increment k.
The best ever fitness value of a particle at the design

coordinates pi
k is denoted by fi

best and the best ever fitness
value of the overall swarm at the coordinates pg

k is
denoted by fg

best. At the initialization time step k = 0, the
particle velocities v0

i are initialized to random values
within the limits 0 � v0 � v0

max. The vector v0
max is

calculated as a fraction of the distance between the upper
and lower bounds.

4 NETWORK COMMUNICATION

In a parallel computational environment, the main
performance bottleneck is the communication latency
between the processors6. This is especially true for large
clusters of computers where the use of high-performance
network interfaces is limited due to their high costs. To
keep the communication between different computa-
tional nodes at a minimum, the fitness-evaluation tasks
are used as the level of granularity for the parallel
software46. As previously mentioned each of these
evaluations can be performed independently and requires
no communication, aside from receiving design-space
coordinates, for evaluating and reporting the fitness
value at the end of the analysis2.

The optimization infrastructure is organized into a
coordinating node and several computational nodes. The
PSO algorithm functions and task orchestration are
performed by the coordinating node, which assigns the
design coordinates to be evaluated, in parallel, to the
computational nodes. With this approach, no communi-
cation is required between the computational nodes as
individual design-fitness evaluations are independent of
each other. The only necessary communication is
between the coordinating node and the computational
nodes encompassing the following:

• Several distinct, design-variable, configuration
vectors assigned by the coordinating node to slave
nodes for fitness evaluation.

• Fitness values reported from slave nodes to the
coordinating node.

• Synchronization signals to maintain program cohe-
rence.

• Termination signals from the coordinating node to
slave nodes on the completion of the analysis in order
for the program to stop cleanly.
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Figure 1 shows the flowchart of the parallel PSO
model that was used in this investigation. The procedure
of the parallel PSO is:
Step 1. Initialization
Step 1.1. initialize the population size Pop-Size, inertia

weight w, acceleration factors c1 and c2

Step 1.2. initialize all particles Xi
k and Vi

k

Step 1.3. evaluate f(Xn) over all particles
Step 1.4. identify the pbest for each particle and gbest for all

particles
Step 2. Iteration
Step 2.1. update the velocity Vi

k+1 according to Eq. (2)
Step 2.2. update the position Xi

k+1 according to Eq. (1)
Step 2.3. update pbest and gbest

Step 2.4. implement the parallel PSO strategy on the gbest

particle
Step 3. if the stopping criterion is met, output the best

solution gbest found so far; otherwise, go to Step 2

The finite-element method (FEM) was used for
discretization. Based on the transient temperature2, FEM
is used to calculate the cooling rate and the temperature
gradient. Figure 2 shows the flowchart of the combined
FEM-Parallel PSO-ANN model that was used in this
investigation.

5 RESULTS AND DISCUSSION

Because of the casting process, the nanoparticles are
anticipated to be distributed between the dendrite
branches, leaving the dendrite branches as particle-free
regions in the material. Figure 3 shows an optical
micrograph of the composite samples containing the
volume fraction 5 % of the nanosized Al2O3 particles. As
expected, �-aluminums are predominately present in the
as-cast A356-matrix composite. Composite samples
show higher hardness and UTS than their unreinforced
counterparts (Figure 4). The higher hardness and UTS of
the composites demonstrate the fact that Al2O3 particles
are incorporated into the Al matrix and act as obstacles
to the motion of dislocation. The composite samples
were subjected to TEM investigations, with a particular
focus on the presence of nanoparticles (Figure 5). The
TEM micrograph of the composite also confirmed a
uniform dispersion of nanoparticles in the Al matrix. It is
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Figure 2: Flowchart of the combined FEM-Parallel PSO -ANN model
Slika 2: Potek kombiniranega FEM-Parallel PSO-ANN-modela

Figure 1: Flowchart of the parallel PSO model
Slika 1: Potek vzporednega PSO-modela

Figure 3: Optical micrograph of Al nanocomposites reinforced with
the volume fraction of Al2O3 5 %
Slika 3: Svetlobni mikroposnetek Al nanokompozita, utrjenega z
volumenskim dele`em Al2O3 5 %



indicated that the UTS of the alloy primarily increases
with an addition of nano-Al2O3. The tensile-strength
increment can be attributed to the reduced grain size. It is
reported that an introduction of particles into the
particle-free matrices provides some heterogeneous
nucleation sites during the solidification, resulting in a
more refined microstructure (Table 3)26,45. The improve-
ment in ductility is consistent with the findings of
Hassan and Gupta46–48 who had observed an improved
ductility caused by a grain refinement and slip on the
extra non-basal planes. The enhancement in the values
observed in the tensile strength of these composites, in

comparison to monolithic aluminium, can also be
ascribed to the strong multidirectional thermal stress at
the Al/Al2O3 interface. It is reported by the other investi-
gators that a low degree of porosity leads to an effective
transfer of an applied tensile load to the uniformly
distributed, strong Al2O3 particulates. Table 3 indicates
that the density of both the unreinforced alloy and
composites are close to their theoretical density.

Table 3: Mechanical and microstructural properties as functions of
volume percentage of nano-Al2O3 particles
Tabela 3: Mehanske lastnosti in zna~ilnosti mikrostrukture v odvisno-
sti od volumenskega dele`a nano Al2O3-delcev, �/%

Al2O3

�/%
Porosity
�/%

Grain size
(μm)

Elongation
(%)

Un-reinforced 0.47 44 3
0.75 0.77 35 1.9
1.5 1.1 31 1.78
2.5 1.4 27 1.9
3.5 1.75 25 1.8
5 2.3 24 1.75

Artificial neural network (ANN) models were then
used to predict and simulate the correlations between the
solidification and working conditions as well as
mechanical properties. There is no known concept about
the selection of the number of neurons in the hidden
layer. The neuron number in the hidden layer can be
found experimentally2. The results of this investigation
show that the ANN consisted of three layers – input,
hidden and output layers – similar to Figure 6, with 8
nodes in the hidden layer and the lowest mean-square
error (MSE), and could be used as the fitness function in
the particle-swarm optimization. The original PSO
algorithm was implemented with a synchronized scheme
for updating the best "remembered" individual and group
fitness values, fi

k and fg
k, and their associated positions pi

k

and pg
k. This entails performing the fitness evaluations

for the entire swarm before updating the best fitness
values43. The subsequent experimentation revealed that
the improved convergence rates can be obtained by
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Figure 6: Effect of the number of neurons in the hidden layer on the
network performance
Slika 6: U~inek {tevila nevronov v skritem sloju na zmogljivost mre`e

Figure 4: Variations of mechanical properties as functions of volume
fractions nano-Al2O3 particulates: a) UTS, b) hardness
Slika 4: Spreminjanje mehanskih lastnosti v odvisnosti od volumen-
skega dele`a nano-Al2O3 delcev: a) natezna trdnost, b) trdota

Figure 5: TEM micrograph of Al nanocomposites reinforced with the
volume fraction of Al2O3 3 %
Slika 5: TEM-posnetek Al nanokompozita, oja~anega z volumenskim
dele`em Al2O3 3 %



updating the fi
k and fg

k values and their positions after
each individual fitness evaluation. It is speculated that
because the updating occurs immediately after each
fitness evaluation, the swarm reacts more quickly to an
improvement in the best-found fitness value. With the
parallel implementation, however, this asynchronous
improvement on the swarm is lost since the fitness
evaluations are performed concurrently. The parallel
algorithm requires updating fi

k and fg
k for the entire

swarm after all fitness evaluations have been performed,
as in the original particle-swarm formulation. Conse-
quently, the swarm will react more slowly to the changes
of the best fitness-value "position" in the design space.
This produces an unavoidable performance loss in terms
of convergence rate compared to the asynchronous
implementation and can be considered as part of the
overhead associated with the parallelization.

The swarm is composed of the particles, where each
particle represents a possible solution to an optimization
problem. A particle will explore the search area on the
basis of two components: its personal experience and the
collective experience of the swarm. The swarm tries to
maximize the value of the objective function. The
"particles" for the PSO are mathematical constructs,
having three main parameters: position, velocity and
fitness. Position represents the unknown variables of the
problem, velocity determines the rate of change of the
position, and fitness is a measure of how well a particle
solves the optimization problem.

The objective function is a measure of the quality of
a solution. The swarm attempts to maximize (or mini-
mize) the objective function. The fitness of a particle is
the value of the objective function at the particle’s
position. The objective functions used in this study are
porosity, UTS, grain size and hardness.

Figure 7 shows the effect of an iteration number on
MSE of a developed ANN. The number of iterations was
selected to be 8000. The final, optimized Al-matrix-
nanocomposite process parameters were 1.83 % of Al2O3

nanoparticles, 10 °C/s cooling rate, 100000 °C/m tempe-
rature gradient, 1.12 % porosity, 184.14 UTS, 30.28 μm

grain size and 72.89 BHN hardness. Therefore, the
parallel particle-swarm optimization gives the optimal
process conditions for an Al matrix reinforced with the
nano-Al2O3 particulates.

6 CONCLUSION

In this research, a novel particle-swarm optimization
is presented, including the design concept as well as the
detailed procedure. In this algorithm, the parameter
setting and the mechanism of the selective particle
regeneration are proposed. There is no obvious effect of
the nanoparticle content on the ductility of the compo-
sites. In contrast to the plasticity, the composites’
strength and hardness are clearly influenced by the effect
of the volume fraction of nano-Al2O3. The application of
the PSO in this work is aimed at minimizing the porosity
and the grain size and maximizing the mechanical
properties of Al-matrix nanocomposites.
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