ESTIMATION OF THE EFFECTIVE BORON-DIFFUSION COEFFICIENT IN THE Fe₂B LAYERS GROWN ON GRAY CAST IRON

DOLOČANJE EFEKTIVNEGA KOEFICIENTA DIFUZIJE BORA PRI RASTI PLASTI Fe2B NA SIVEM LITEM ŽELEZU

Boudjema Bouarour¹, Mourad Keddam¹, Omar Allaoui²

¹Laboratoire de Technologie des Matériaux, Département de Sciences des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, ²Laboratoire de Génie des Procédés, Université Amar Tellidji de Laghouat, B.P. 37 G, 03000 Laghouat, Algeria

keddam@yahoo.fr

Prejem rokopisa – received: 2013-09-29; sprejem za objavo – accepted for publication: 2013-10-09

The present work evaluates the effective diffusion coefficient of boron in the Fe.B layers grown on a substrate from gray cast iron. The boride layers were generated using powder-pack boriding in the temperature range of 1173-1273 K for (2, 4, 6 and 8) h of treatment. First, the diffusion coefficient of boron in Fe₂B (free of chemical stresses) was obtained through solving the mass-balance equation at the (Fe,B/substrate) interface using the experimental values of parabolic-growth constants taken from the literature.

Second, a simple equation was derived to evaluate the effective diffusion coefficient of boron in Fe₂B by considering the effect of chemical stresses. The estimated values of boron activation energies were 154.8 kJ/mol and 164.8 kJ/mol with and without the presence of chemical stresses. Furthermore, the calculated values of effective diffusion coefficients were found to be sensitive to the change in the boriding temperature and to the increase in the upper boron concentration in Fe_2B .

Keywords: boriding, chemical stresses, kinetics, Fick's law, effective diffusion coefficient, incubation time

To delo ocenjuje efektivni koeficient difuzije bora v plasteh Fe₂B, zraslih na podlagi iz sivega litega železa. Boridne plasti so nastale med boriranjem v prahu v škatli, v temperaturnem območju 1173–1273 K in trajanju (2, 4, 6 in 8) h. Najprej je bil določen koeficient difuzije bora v Fe,B (brez kemijskih napetosti) z rešitvijo enačbe za masno ravnotežje (Fe,B/podlaga) na stiku z uporabo eksperimentalnih vrednosti za konstanto parabolične rasti, dobljeno v literaturi.

Nato je bila izpeljana enostavna enačba za oceno efektivnega koeficienta difuzije bora v Fe2B z upoštevanjem kemijskih napetosti. Določeni sta bili vrednosti aktivacijske energije bora 154,8 kJ/mol in 164,8 kJ/mol s kemijskimi napetostmi in brez njih. Ugotovljeno je bilo tudi, da so izračunane vrednosti efektivnega koeficienta difuzije občutljive za spremembo temperature boriranja in za naraščanje koncentracije bora v Fe₂B.

Ključne besede: boriranje, kemijske napetosti, kinetika, Fickov zakon, efektivni koeficient difuzije, čas inkubacije

1 INTRODUCTION

Boriding is a well-known thermochemical treatment for creating boride layers with interesting properties by saturating the surface layer of a material with boron. It is used to improve the surface hardness, the frictional wear, the fatigue endurance and the corrosion resistance of ferrous and non-ferrous alloys. It can be performed between 1123 K and 1323 K to form iron borides on the material surface with the treatment times varying from 0.5 h to 10 h1. Different boriding methods exist in practice. However, the powder-pack boriding has the advantages of simplicity, flexibility with respect to the powder composition, minimum equipment and cost-effectiveness.²⁻⁴

The boriding temperature, the time duration, the boron potential of the medium and the chemical composition of the substrate are the key parameters controlling the morphology, the growth kinetics and the microstructural nature of boride layers.5-7

The present model considers the effect of chemical stresses when evaluating the effective diffusion coefficient of boron in the Fe₂B layers grown on a gray-castiron substrate. In this context, some recent reference studies regarding the evaluation of the effective diffusion coefficient of boron in Fe₂B were reported for borided AISI 1018 and AISI 4140 steels and borided Armco iron.8-10

Certain reference works^{11,12} report on the chemical stresses resulting from the composition gradient similar to those caused by the thermal stresses in an isotropic medium. Diffusion-induced stresses (or chemical stresses) are then built up due to the composition inhomogeneity during mass transfer. Diffusion-induced stresses also change the mechanical properties of metal systems during mass transfer. Larché and Cahn13-15 investigated the stresses arising from the inhomogeneities of materials. Consequently, chemical stresses enhance both the diffusion coefficient and the concentration.¹⁶

The objective of this work was to evaluate the diffusivity of boron in Fe₂B (with and without the presence of chemical stresses) in the temperature range of 1173-1273 K by applying a kinetic model of a monolayer configuration of Fe₂B grown on gray cast iron.

B. BOUAROUR et al.: ESTIMATION OF THE EFFECTIVE BORON-DIFFUSION COEFFICIENT ...

2 MATHEMATICAL MODEL

A schematic non-linear concentration profile of boron in the Fe_2B layer is depicted in **Figure 1** where the boron potential allows the formation of Fe_2B on the surface of the material.

 $C_{up}^{\text{Fe}_{2B}}$ denotes the upper boron concentration in Fe₂B, $C_{low}^{\text{Fe}_{2B}}$ (= 59.2 × 10³ mol m⁻³) represents the lower boron concentration in Fe₂B and $t_0(T)$ is the boride incubation time depending on the boriding temperature. C_{ads} is defined as the effective boron concentration¹⁷. Distance *u* is the layer depth at the (Fe₂B/substrate) interface as a function of treatment time *t*. C_0 is the boron solubility in the matrix. The upper boron concentration in Fe₂B is between 59.2 × 10³ mol m⁻³ and 60 × 10³ mol m⁻³ since this phase exhibits a narrow composition range as pointed out by Massalski¹⁸.

When building a mathematical model of the problem, the following assumptions are made:

- The growth kinetics is controlled by the boron diffusion in the Fe₂B layer
- The growth of the Fe₂B boride layer is a consequence of the boron diffusion perpendicular to the sample surface
- The solid solution of boron in the matrix behaves ideally (i.e., the activity coefficient of boron in the solid solution is independent on the concentration)
- The Fe_2B iron boride nucleates after a certain incubation time
- The boride layer is thin in comparison to the sample thickness
- Local equilibrium is held at the (Fe₂B/substrate) interface
- A planar morphology is assumed for the (Fe₂B/substrate) interface
- The volume change during the phase transformation is neglected

Distance from the surface (µm)

Figure 1: Schematic non-linear concentration profile of boron in the $\ensuremath{\mathsf{Fe}_2\mathsf{B}}$ layer

Slika 1: Shematični prikaz nelinearnega profila koncentracije bora skozi plast Fe_2B

- A uniform temperature is assumed throughout the sample
- No effect of the alloying elements on the boron diffusion is assumed
- The pressure effect on the boron effective diffusion coefficient in Fe₂B is ignored

The initial condition of the diffusion problem is expressed with Equation (1):

$$C_{\text{Fe},B}(x,0) = C_0 \tag{1}$$

The boundary conditions of the diffusion problem are given with Equations (2) and (3):

$$C_{\text{Fe}_{2B}} \left\{ x \left[t = t_0(T) \right] = 0, t_0(T) \right\} = C_{\text{up}}^{\text{Fe}_{2B}}$$

for $C_{\text{ads}} \succ 59.2 \times 10^3 \text{ mol m}^{-3}$ (2)

$$C_{\text{Fe}_{2}\text{B}} \{ x(t=t) = u, t \} = C_{\text{low}}^{\text{Fe}_{2}\text{B}}$$

for $C_{\text{ads}} \prec 59.2 \times 10^3 \text{ mol m}^{-3}$ (3)

for $0 \le x \le u$.

The Fick's second law of diffusion¹⁹ relating to the change in the boron concentration throughout the Fe₂B layer with time *t* and location x(t) is:

$$\frac{\partial C_{\text{Fe}_{2B}}(x,t)}{\partial t} = D_{\text{B}}^{\text{Fe}_{2B}} \frac{\partial^2 C_{\text{Fe}_{2B}}(x,t)}{\partial x^2}$$
(4)

where $D_B^{Fe_2B}$ is the diffusion coefficient of boron in Fe₂B free of chemical stresses and $C_{Fe_2B}(x,t)$ is the boron concentration. The boron concentration along the boride layer, which is the solution of the Fick's second law (Equation (4)) in a semi-infinite medium, is consistent with **Figure 1**. Its expression is given with Equation (5):

$$C_{\text{Fe}_{2}\text{B}}(x,t) = C_{\text{up}}^{\text{Fe}_{2}\text{B}} + \left(\frac{C_{\text{low}}^{\text{Fe}_{2}\text{B}} - C_{\text{up}}^{\text{Fe}_{2}\text{B}}}{erf \frac{u}{2\sqrt{D_{\text{B}}^{\text{Fe}_{2}\text{B}} \cdot t}}}\right) \cdot erf \frac{x}{2\sqrt{D_{\text{B}}^{\text{Fe}_{2}\text{B}} \cdot t}}(5)$$

for $0 \le x \le u$.

The continuity equation at the (Fe₂B/substrate) interface is expressed with Equation (6):

$$w_{\mathrm{Fe}_{2}B}\left[\frac{\mathrm{d}x}{\mathrm{d}t}\right]_{x=u} = -D_{\mathrm{B}}^{\mathrm{Fe}_{2}B}\left[\frac{\partial C_{\mathrm{Fe}_{2}B}}{\partial x}\right]_{x=u} \tag{6}$$

with $w_{\text{Fe}_2\text{B}} = \left[0.5 \times (C_{\text{up}}^{\text{Fe}_2\text{B}} + C_{\text{low}}^{\text{Fe}_2\text{B}}) - C_0 \right].$

Boride layer thickness u follows the parabolic-growth law expressed with Equation (7), where k represents the parabolic-growth constant at the (Fe₂B/substrate) interface:

$$u = k \sqrt{t - t_0(T)} \tag{7}$$

where $[t - t_0(T)]$ is considered as the effective growth time of the Fe₂B layer^{9,10,20–22}. According to Brakman et al.²³, boride incubation time $t_0(T)$ is decreased as the temperature goes up. The $\beta(T)$ parameter, which takes

Materiali in tehnologije / Materials and technology 48 (2014) 4, 515-520

Figure 2: Temperature dependence of the $\beta(T)$ parameter **Slika 2:** Temperaturna odvisnost parametra $\beta(T)$

into account the effect of the boride incubation time, is given with Equation (8):

$$\beta(T) = k \sqrt{1 - \frac{t_0(T)}{t}} \tag{8}$$

The $\beta(T)$ parameter can be approached with a linear relationship (Equation (9)), illustrated also in **Figure 2** (with a correlation factor = 0.982):

$$\beta(T) = (5 \cdot 7 \times 10^{-4} T + 0.24722) \tag{9}$$

By derivation of Equation (5) with respect to distance x(t) and Equation (7) with respect to time *t*, Equation (6) can be rewritten²⁴ as follows:

$$\begin{bmatrix} 0.5(C_{up}^{Fe_{2}B} + C_{low}^{Fe_{2}B}) - C_{0} \end{bmatrix} k = \\ = 2\sqrt{\frac{D_{B}^{Fe_{2}B}}{\pi}} \cdot \frac{(C_{low}^{Fe_{2}B} - C_{up}^{Fe_{2}B})}{erf \frac{k\beta(T)}{2\sqrt{D_{B}^{Fe_{2}B}}}} \cdot \exp\left(-\frac{\beta^{2}(T)k^{2}}{4D_{B}^{Fe_{2}B}}\right) \cdot \beta(T)$$
⁽¹⁰⁾

To evaluate the diffusion coefficient of boron in Fe₂B $D_{\rm B}^{{\rm Fe}_2{\rm B}}$ (free of chemical stresses), it is necessary to use the Newton-Raphson routine²⁵ to solve the problem.

For this purpose, a computer program was written in Matlab (version 6.5) to find the roots of Equation (10). By ignoring the pressure effect on diffusion, the effective diffusion coefficient of boron in Fe₂B (see reference¹⁰ for more details) can be evaluated from Equation (11) as follows:

$$D_{\rm B}^{\rm eff} = D_{\rm B}^{\rm Fe_2B} \left[1 + \frac{2C_{\rm Fe_2B}(x,t)\overline{V}^2 E}{9RT(1-\nu)} \right]$$
(11)

where $D_{\rm B}^{\rm eff}$ and $D_{\rm B}^{\rm Fe_2B}$ are the diffusion coefficients of boron in Fe₂B with and without the chemical stresses, respectively. The origin of Equation (11) can be found elsewhere in^{13–15}.

Since the solid solution of boron in the matrix is ideal, the second term in Equation (11) is positive regardless of \overline{V} . Partial molar volume \overline{V} is taken to be equal to $(1.01 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}).^{26}$

E = 290 GPa and v = 0.3 are the Young's modulus and Poisson's ratio of the Fe₂B layer, respectively^{27,28}. Taking the mean value of the boron concentration throughout the Fe₂B layer¹⁰, i.e., _

$$C_{\text{Fe}_{2}\text{B}}(x,t) = \left[05 \times (C_{\text{up}}^{\text{Fe}_{2}\text{B}} + C_{\text{low}}^{\text{Fe}_{2}\text{B}})\right], \text{ Equation (11) yields:}$$
$$D_{\text{B}}^{\text{eff}} = D_{\text{B}}^{\text{Fe}_{2}\text{B}} \left[1 + \frac{\overline{V}^{2} (C_{\text{up}}^{\text{Fe}_{2}\text{B}} + C_{\text{low}}^{\text{Fe}_{2}\text{B}})E}{9RT(1-\nu)}\right]$$
(12)

3 RESULTS AND DISCUSSION

To evaluate the diffusion coefficient of boron in Fe₂B using Equation (10), the experimental results found in the reference work²⁹ in terms of the parabolic growth constants at the (Fe₂B/ substrate) interface and boride incubation times were used. The chemical composition (in mass fractions) of the gray cast iron (class 30, ASTM A48) to be borided is the following: (3.44–3.45 % C, 1.7-1.77 % Si, 0.5-0.6 % Mn, 0.2 % Cr, 0.45-0.5 % Cu). The boriding process was performed on the gray cast iron under an argon atmosphere in a conventional furnace at three temperatures (1173, 1223 and 1273) K and for variable times (2, 4, 6 and 8) h. The boriding medium is composed of boron carbide (B₄C) as the boron source and KBF₄ as the activator. Fifty measurements were taken on different cross-sections of the borided samples of the gray cast iron to estimate the thickness of the Fe₂B layer. As the input data, the model uses the following parameters: the time, the temperature, the upper and lower boron concentrations in the Fe₂B iron boride and the experimental values of the parabolic

Figure 3: Evolution of the squared value of the Fe₂B layer thickness versus the boriding time at different temperatures **Slika 3:** Razvoj kvadratne vrednosti debeline plasti Fe₂B v odvisnosti od časa boriranja pri različnih temperaturah

growth constants at the (Fe₂B/substrate) interface. The effective diffusion coefficient of boron in Fe₂B was estimated on the basis of Equation (12). Figure 3 shows the squared value of the experimental boride-layer thickness as a function of the boriding time, according to Equation (13):

$$u^{2} = k^{2} \left[t - t_{0}(T) \right]$$
(13)

The squared values of parabolic-growth constants (k^2) are obtained from the slopes of the straight curves using the least-square method. The intercept with the abscissa determines the boride incubation time at each temperature.

Table 1 gives the experimental values of parabolicgrowth constants k in the temperature range of 1173–1273 K, along with the corresponding boride incubation times deduced from **Figure 3**.

Table 1: Experimental values of parabolic-growth constants at the Fe_2B /substrate interface with the corresponding boride incubation times

Tabela 1: Eksperimentalne vrednosti konstant parabolične rasti na stiku Fe₂B/podlaga z ustreznimi inkubacijskimi časi boriranja

T/K	Experimental para- bolic-growth constant <i>k</i> /µm s ^{-0.5}	Incubation boride time (s)
1173	0.3150	3200
1223	0.4321	2428
1273	0.6122	1902

Table 2 lists the simulated values of $D_{\rm B}^{\rm Fe_2B}$ and $D_{\rm B}^{\rm eff}$ obtained at each boriding temperature using Equations (10) and (12), for the upper value of the boron content in Fe₂B ¹⁰ being equal to 59.80 × 10³ mol m⁻³.

Table 2: Computed values of the boron-diffusion coefficients for Fe₂B and the effective diffusion coefficients of boron in Fe₂B, for the upper boron content in the Fe₂B phase equal to 59.80×10^3 mol m⁻³

Tabela 2: Izračunane vrednosti koeficientov difuzije bora v Fe₂B in efektivni koeficienti difuzije bora v Fe₂B za zgornjo vsebnost bora v Fe₂B fazi 59,80 × 10^3 mol m⁻³

T/K	$\frac{D_{\rm B}^{\rm Fe_2B}/(\rm m^2s^{-1})}{\rm using\ Eq.(10)}$	$\frac{D_{\rm B}^{\rm eff}/({\rm m}^2{\rm s}^{-1})}{\rm using}{\rm Eq.}(12)$
1173	6.31×10^{-12}	3.67×10^{-10}
1223	11.881×10^{-12}	6.64×10^{-10}
1273	23.86×10^{-12}	12.82×10^{-10}

When incorporating the effect of chemical stresses on the boron diffusion, the effective diffusion coefficient of boron in Fe₂B is increased with the boriding temperature. So, the dependence between the diffusivity of boron in Fe₂B and the boriding temperature can be expressed with the Arrhenius equation. The temperature dependence of the diffusivity of boron in Fe₂B is then depicted in **Figure 4**. The activation energy of boron (with and without the presence of chemical stresses) can be easily obtained from **Figure 4**.

As a result, the diffusion coefficient of boron in Fe_2B in the temperature range of 1173–1273 K is given with:

Figure 4: Temperature dependence of the diffusivity of boron in Fe₂B **Slika 4:** Temperaturna odvisnost difuzivnosti bora v Fe₂B

$$D_{\rm B}^{\rm eff} = 1.35 \times 10^{-4} \exp \frac{-164.8 \text{ kJ/mol}}{RT} \text{ m}^2\text{/s}$$
 (14)

The effective diffusion coefficient of boron in Fe_2B is also determined as:

$$D_{\rm B}^{\rm eff} = 2.8 \times 10^{-3} \exp \frac{-154.8 \text{kJ/mol}}{RT} \text{ m}^2/\text{s}$$
 (15)

where *R* is the universal gas constant (8.314 J/mol K) and *T* represents the absolute temperature. The boron activation energy obtained in this work, in the absence of chemical stresses, was compared with the values found in the literature^{29–34}.

Table 3 shows a comparison of the boron activation energies (in the absence of chemical stresses) obtained from different borided materials. The reported values in **Table 3** differ from each other depending on different factors such as the chemical composition of the substrate, the boriding method and the kinetic approach used to estimate the boron activation energy.

 Table 3: Comparison of the boron activation energies (in the absence of chemical stresses) for borided ferrous alloys

Tabela 3: Primerjava aktivacijskih energij bora (pri odsotnosti kemijskih napetosti) za primere boriranja zlitin železa

Material	Boron activation energy (kJ mol ⁻¹)	Reference
Armco iron	151	30
Armco iron	157	31
AISI H13	186.2	32
AISI 1045	169.6	33
Gray cast iron	177.4	29
Gray cast iron	175	34
Gray cast iron	164.8	Present work

It is seen that the calculated value of the boron activation energy (154.8 kJ mol⁻¹) under chemical stresses is lower than the one for 164.8 kJ mol⁻¹ due to an enhancement of the boron diffusion. The temperature dependence of the computed values of the effective

Figure 5: Temperature dependence of the computed values of the effective diffusion coefficient of boron in Fe₂B for the increasing values of $C_{up}^{\text{Fe}_2B}$

Slika 5: Temperaturna odvisnost izračunanih vrednosti efektivnega koeficienta difuzije bora v Fe₂B pri naraščajočih vrednostih $C_{un}^{Fe_2B}$

diffusion coefficient of boron in Fe_2B for the increasing values of the upper boron contents in Fe_2B is shown in **Figure 5**.

With the presence of chemical stress, the diffusion of boron atoms is accelerated with an increase in the boriding temperature since the diffusion process is a thermally activated phenomenon. At a given value of the upper boron content in Fe₂B, the computed values of $D_{\rm B}^{\rm eff}$ are affected by the change in the boriding temperature.

The variation in the calculated values of the effective diffusion coefficient of boron in Fe_2B as a function of the

Figure 6: Variation in the calculated values of effective diffusion coefficients of boron in Fe₂B as a function of the upper boron content in the same phase for different boriding temperatures

Slika 6: Spreminjanje izračunanih vrednosti efektivnega koeficienta difuzije bora v Fe_2B v odvisnosti od zgornje vsebnosti bora v isti fazi pri različnih temperaturah boriranja

Materiali in tehnologije / Materials and technology 48 (2014) 4, 515-520

upper boron content in the same phase $(C_{up}^{Fe_2B})$ is displayed in **Figure 6** for different boriding temperatures. The effective diffusion coefficient of boron in Fe₂B is decreased with an increase in the upper boron content in Fe₂B. It can be explained with the saturation of the material surface with the active boron atoms for longer boriding times. It is concluded that the calculated values of the effective diffusion coefficients of boron in Fe₂B at a fixed boriding temperature.

4 CONCLUSION

In the present work, the diffusion coefficient of boron in the Fe₂B layers grown on gray cast iron was estimated through the mass-balance equation at the (Fe₂B/substrate) interface under certain assumptions. The model included the effect of boride incubation times by forming the Fe₂B layers. Afterwards, the boron effective diffusion coefficient in Fe₂B was evaluated by applying a simple equation based on the elasticity theory.

A lower value of the boron activation energy under chemical stresses was obtained (154.8 kJ mol⁻¹) for an upper boron content in Fe₂B equal to 59.80×10^3 mol m⁻³. This result is a consequence of the chemical stresses enhancing the boron diffusion through the Fe₂B layers.

In addition, it is also shown that the calculated values of the boron effective diffusion coefficient in Fe_2B vary notably with the boriding temperature. The values of the boron effective diffusion coefficients in Fe_2B are found to be decreased with an increase in the upper boron content in Fe_2B at a given boriding temperature.

The model can be reformulated to be applied to a bilayer configuration (FeB + Fe₂B) as an extension of the present work to estimate the boron diffusion coefficients for the FeB and Fe₂B layers in borided ferrous alloys, incorporating the effect of chemical stresses.

5 REFERENCES

- ¹ A. K. Sinha, J. Heat Treat., 4 (**1991**), 437
- ²M. Keddam, S. M. Chentouf, Applied Surf. Sci., 255 (2005), 393–399
- ³B. Selcuk, R. Ipek, M. B. Karamis, V. Kuzucu, J. Mater. Process. Technol., 103 (2000), 310–317
- ⁴S. Taktak, Mater. Des., 28 (2007), 1836–1843
- ⁵G. Palombarini, M. Carbucicchio, J. Mater. Sci. Lett., 3 (**1984**), 791–794
- ⁶C. Martini, G. Palombarini, M. Carbucicchio, J. Mater. Sci., 39 (2004), 933–937
- ⁷ Y. Gencer, Surf. Eng., 27 (2011), 634–638
- ⁸ M. Ortiz-Dominguez, I. Campos-Silva, G. Ares De Parga, J. Martínez-Trinidad, Kovove Mater., 50 (2012), 115–123
- ⁹ M. Keddam, B. Bouarour, Z. Nait Abdellah, R. Chegroune, MATEC Web of Conferences, 3 (2013), 01012, http://dx.doi.org/10.1051/matecconf/20130301012
- ¹⁰Z. Nait Abdellah, M. Keddam, A. Elias, International Journal of Materials Research, 104 (2013), 260–265

B. BOUAROUR et al.: ESTIMATION OF THE EFFECTIVE BORON-DIFFUSION COEFFICIENT ...

- ¹¹ J. C. M. Li, Metall. Trans. A, 9A (1978), 1353–1380
- ¹² S. Prussin, J. Appl. Phys., 32 (1961), 1876–1881
- ¹³ F. C. Larché, J. W. Cahn, Acta Metall., 33 (1985), 331–357
- ¹⁴ F. C. Larché, J. W. Cahn, J. Res. Natl. Bur. Stand., 89 (1984), 467–500
- ¹⁵ F. C. Larché, P. W. Voorhees, Defect Diffus. Forum, 129–130 (1996), 31–36
- ¹⁶ J. L. Chu, S. Lee, J. Appl. Phys., 75 (1994), 2823–2829
- L. G. Yu, X. J. Chen, K. A. Khor, Acta Mater., 53 (2005), 2361–2368
 T. B. Massalski, Binary Alloys Phase diagrams, 2nd ed., ASM International Metals Park, OH 1990
- ¹⁹ J. Crank, The Mathematics of Diffusion, Clarendon, Oxford 1975
- ²⁰ I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M. A. Donu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M. Y. Jiménez-Reyes, Surf. Coat. Technol., 205 (2010), 403–412
- ²¹ M. Keddam, Appl. Surf. Sci., 257 (2011), 2004–2010
- ²² Z. Nait Abdellah, M. Keddam, A. Elias, Acta Physica Polonica A, 122 (2012), 588–592
- ²³ C. M. Brakman, A. J. W. Gommers, E. J. Mittemeijer, J. Mater. Res., 4 (1989), 1354–1370
- ²⁴ Z. Nait Abdellah, M. Keddam, R. Chegroune, B. Bouarour, L. Haddour, A. Elias, Matériaux et Techniques, 100 (2012), 581–588
- ²⁵ W. H. Press, B. P. Flannery, S. A. Teukolsky, Numerical recipes in Pascal: the art of scientific computing, Cambridge University Press, 1989

- ²⁶ S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, Third Edition, McGraw-Hill, New York 1970
- ²⁷ I. N. Frantzevich, F. F. Voronov, S. A. Bakuta, Elastic contants and elastic modulus for metals and non-metals: Handbook, First Ed., Naukova Dumka Press, Kiev 1982
- ²⁸ D. Golanski, A. Marczuk, T. Wierzchon, J. of Mater. Science Letters, 14 (**1995**), 1499–1501
- ²⁹ I. Campos-Silva, N. López-Perrusquia, M. Ortiz-Domínguez, U. Figueroa-López, O. A. Gómez-Vargas, A. Meneses-Amador, G. Rodríguez-Castro, Kovove Mater., 47 (2009), 75–81
- ³⁰ I. Campos, J. Oseguera, U. Figueroa, J. A. Garcia, O. Bautista, G. Keleminis, Mater. Sci. Eng. A, 352 (2003), 261–265
- ³¹ I. Campos-Silva, M. Ortiz-Domínguez, H. Cimenoglu, R. Escobar-Galindo, M. Keddam, M. Elías-Espinosa, N. López-Perrusquia, Surf. Eng., 27 (2011), 189–195
- 32 K. Genel, Boriding Vacuum, 80 (2006), 451-457
- ³³ I. Campos, O. Bautista, G. Ramirez, M. Islas, J. De La Parra, L. Zuniga, Appl. Surf. Sci., 243 (2005), 429–436
- ³⁴ I. Campos-Silva, M. Ortiz-Domínguez, M. Keddam, N. López-Perrusquia, A. Carmona-Vargas, M. Elias-Espinosa, Appl. Surf. Sci., 255 (2009), 9290–9295