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Low thermal conductivity, high strength, high ductility and high work-hardening tendency of austenitic stainless steels are the
main factors that make their machinability difficult. This study investigates the influence of material modelling on the
serrated-chip formation during the orthogonal cutting of the AISI316H stainless steel using finite-element simulations. Turning
tests were carried out at three different cutting speeds and constant depth of cut and feed rate. Predictions were compared with
the orthogonal-cutting tests and found to be in agreement.
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Nizka toplotna prevodnost, visoka trdnost, velika duktilnost in sposobnost mo~nega utrjevanja so glavni vzroki za to, da se
austenitno nerjavno jeklo te`ko mehansko obdeluje. V {tudiji so avtorji modelirali tvorbo nazob~anega ostru`ka med pravo-
kotnim rezanjem AISI316H nerjavnega jekla. Za modeliranje so uporabili metodo kon~nih elementov (MKE). Preizkusi
stru`enja so bili izvedeni pri treh razli~nih rezalnih hitrostih ter pri konstantni globini reza in pomikanja. Rezultate modeliranja
so primerjali s prakti~nimi preizkusi pravokotnega rezanja (stru`enja). Ugotovili so, da se prakti~ni rezultati preizkusov dobro
ujemajo z rezultati MKE-modeliranja.

Klju~ne besede: AISI 304 nerjavno jeklo, metoda kon~nih elementov, tvorba nazob~anih ostru`kov, sposobnost strojnega
obdelovanja

1 INTRODUCTION

Austenitic stainless steels, characterised by a high
work-hardening rate and low thermal conductivity 1, are
used to fabricate chemical and food-processing equip-
ment, as well as machinery parts requiring high corro-
sion resistance.2 They are generally regarded as more
difficult to machine than carbon and low-alloy steels on
account of their high strength, high work-hardening
tendency and poor thermal conductivity.3,4 Problems such
as poor surface finish and high tool wear are common.5

Work hardening is recognised to be responsible for the
poor machinability of austenitic stainless steels.6 In
addition, they bond very strongly to the cutting tool
during cutting and when a chip is broken away, it may
bring with it a fragment of the tool, particularly when
cutting with cemented carbide tools. When machining
this material, cutting-force variation is also much more
obvious than in the case of machining unalloyed steel.1

Especially, in order to increase the productivity and
tool life in the machining of the AISI304 and AISI316
series stainless steel, it is necessary to develop a reliable
FE model for different cutting processes. To accurately
analyse this process using numerical methods such as the
finite-element analysis (FEA), the knowledge of the
material constitutive behaviour under these severe load-
ing conditions is a pre-requisite and hence correct work-

material flow-stress data need to be used. In fact, the
success and reliability of numerical models are heavily
dependent upon the work-material-flow stress, friction
parameters for the tool and work-material interfaces, the
fracture criterion and thermal parameters.3,7–10

Many studies on the chip formation have been
published by now. Titanium alloys are used in most of
these studies. M. Bäker11 studied the influence of the
material law determining the plastic flow on the chip
formation of titanium alloys at high cutting speeds, while
T. Özel et al.12 studied constitutive-material models to
simulate the serrated-chip formation, including also
other materials. In parallel with these investigations,
M. Sima and T. Özel13 investigated the influence of con-
stitutive-material models and elastic/viscoplastic finite-
element formulation on a serrated-chip formation for
modelling the machining of the Ti–6Al–4V titanium
alloy. R. Alvarez et al.14 analysed the effect of eight
constitutive models on the saw-toothed chip formation in
Ti6Al4V orthogonal cutting. In another study carried out
by G. Chen et al.15, a Johnson-Cook material model with
an energy-based ductile-failure criterion was developed
using a titanium-alloy (Ti–6Al–4V) high-speed machin-
ing FEA. D. Umbrello16 presented a finite-element anal-
ysis (FEA) of machining TiAl6V4 for both conventional
and high-speed cutting regimes. Work to date has shown
that little work has been carried on the determination of
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the chip formation when machining AISI304 stainless
steels. In a study carried out by J. Q. Xie et al.17, the
theory of shear banding was included in the analysis of
chip formation and chip instability. They used analytic
and experimental methods to study these characteristics.
This work aims to investigate the serrated-chip formation
in the machining of the AISI304 stainless steel using
finite-element simulations.

2 EXPERIMENTAL PART

2.1 Turning process

Turning processes were performed on a CNC turning
lathe that has a capacity of 10kW using AISI 1045
samples with dimensions of Ø50 mm × 100 mm. The
rake angle was 0° and the clearance angle was 5°. The
turning processes were carried out using the turning
parameters from Table 1. The cutting length for the
turning processes was chosen to be 10 mm.

Table 1: Turning parameters

Parameters Value
Cutting speed – Vc (m/min) 100

Feed rate – f (min–1) 0.1
Depth of cut – ap (mm) 0.5

2.2 Numeric analysis

In 2D numeric simulations, the cutting tool and the
workpiece consist of a tetrahedral mesh. While the mesh
structure of the workpiece consists of 1453 elements and
1547 nodes, the mesh structure of the cutting tool
consists of 770 elements and 823 nodes. The mesh
structure of the model of the workpiece and cutting tool

is given in Figure 1. However, the workpiece model was
constrained by the lateral surfaces and lower surface.
The contact algorithm for the interface of the cutting tool
and workpiece was defined as the master and slave in the
software. As the friction model for these two elements,
the Coulomb model of friction was selected because it
uses low cutting speeds. The Cockcroft-Latham fracture
criterion was selected as the damage criterion. The
Cockcroft-Latham criterion is given in Equation (1).
According to the Cockcroft-Latham damage criterion,
damage occurs when the accumulated stress state D, over
the plastic strain, reaches the critical damage value
(Dcr). The Dcr was selected to be 90 for all the cutting
simulations because it had the most suitable chip form.
The friction coefficient for the simulation study was
calculated to be 0.41 for the normal machining and 0.60
for the damage criterion. This coefficient of the friction
between the tool and the chip in orthogonal cutting was
calculated using Equations (2) and (3).18 Fc and Ft forces
were obtained experimentally; Fs, Ns, F and N forces
depend on them and can be calculated from Figure 2.
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Figure 2: Two-dimensional (2D) force system in turning operations (Merchant’s force circle)

Figure 1: Mesh process
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2.3 Material model

While the workpiece was selected as AISI 316h, the
cutting tool was selected to be tungsten carbide (WC).
The mechanical and thermal properties of the WC and
AISI 316h are given in Table 2.19 The flow-stress curve
of the workpiece-material model was taken from refe-
rence19. The flow stress was defined as a function of the
strain, strain rate and temperature as seen in Figure 3.
The flow stress (�) in Equation (4) was selected to ex-
hibit the true material behavior as a function of the effec-
tive plastic strain (�), effective strain rate (��) and tempe-
rature (T). The flow-stress curves are very important for
high-temperature applications such as metal cutting.

� � �= ( , � , )T (4)

Table 2: Mechanical and thermal properties of the drill bit and bone
materials19

Workpiece-material properties (AISI 316h316H)
Modulus of elasticity (GPa) 20 °C (210)

Poisson’s ratio 0.3
Thermal-expansion coefficient

(10–6 °C–1) 93.33 °C (1.20×10–5)

Thermal conductivity(W/mK) 100 °C (17)
Heat capacity (N/mm2 °C) 93.33 °C (2.78)

Emissivity 0.7
Cutting-tool-material properties (WC)

Modulus of elasticity (GPa) 650
Poisson’s ratio 0.25

Thermal-expansion coefficient
(10–6 °C–1) 5

Thermal conductivity(W/mK) 59
Heat capacity (N/s /mm/°C) 15

Emissivity 0

3 RESULTS

At the end of the study, force variations occurred in
the normal machining (NM) and the machining with
damage criterion (MWDC) was very different, as seen in
Figure 4. As seen in Table 3, while the MWDC de-
formed-chip thickness was lower than during the NM,
the chip ratio and shear-angle values were higher during
the MWDC than during the NM. Good agreement bet-
ween experimental tests and FEM simulations was found
for cutting forces and shear-angle values, as shown in
Figures 5 and 6.
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Figure 5: Deformed-chip thickness and shear angles for the NM and
MWDCFigure 3: Flow-stress curves for the workpiece material19

Figure 4: Force variations occurred during NM and MWDC



4 CONCLUSIONS

In this study, a finite-element model was developed
to see the effect of a serrated-chip formation in the ma-
chining of the AISI304 stainless steel using finite-ele-
ment simulations. A computer-aided numerical simula-
tion of the turning process was also performed using
DEFORM – 2D software. It can be said that the 2D FEM
model gives reasonable results compared to the experi-
mental results in view of cutting forces, thrust force and
shear angles. This proves the accuracy of the developed
2D FEM model, which can be used for this type of
turning simulations.
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Figure 6: a) Cutting and b) thrust force for MWDC

Table 3: Comparison of NM and MWDC

Cutting speed
(m/min)

Undeformed chip
thickness, t (mm)

Deformed chip
thickness, tc (mm) Chip ratio, rc

Shear angle, �
(with Eg. 17)

Shear angle, �
(FEM)

NM 100 0.5 1.85 0.268 15 17
MWDC 100 0.5 0.76 0.657 33.304 37




