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[tore Steel Ltd. is one of the largest flat spring steel producers in Europe. Using the continuous rolling line (10 stands – 6
horizontal, 4 vertical), all the rolled dimensions, including round (more than 80 nominal diameters), flat (more than 650 shapes
and dimensions) and square bars (13 different sizes), can be rolled each month. The purpose of the research was to identify the
parameters affecting the working roll wear in the hot-rolling process. For this purpose, we collected data during the 2013 annual
production on the first stand of the continuous roll mill for rolling of diameters from �20 mm to �58 mm for which data of the
groove shape and surface, roll diameter, contact time, carbon equivalent, rolling temperature and quantity of the rolled material
are available. After roll wear-out they are machined using a turning operation. The root cause “why the rolls were machined”
was not collected. To evaluate the roll wear-out, the quantity of rolled material before the machining of rolls was used.
Prediction of the quantity of rolled material before the machining of rolls was conducted using linear regression and genetic
programming. The developed models were validated using the data from 2014. The validation showed that in the case of
excluding the fatigue cracks from collected data the prediction could be improved drastically. The results of the research can be
used in practice for predicting roll wear and consequently roll maintenance on the basis of rolling schedule quantities.
Keywords: roll wear, hot rolling, prediction, linear regression, genetic programming

[tore Steel d.o.o. je ena izmed najve~jih proizvajalcev plo{~atega, vzmetnega jekla v Evropi. S pomo~jo kontinuirane valjarske
proge (10 ogrodij – 6 horizontalnih, 4 vertikalne) lahko mese~no izvaljajo vse dimenzije, vklju~ujo~ okrogle (80 premerov),
kvadratne (13 stranic) in plo{~ate (ve~ kot 650 oblik in dimenzij) palice. Namen raziskave je bil prepoznati parametre, ki
vplivajo na obrabo valjev med vro~im valjanjem. V te namene so se v letu 2013 zbirali podatki pri prvem horizontalnem ogrodju
kontinuirane valjarske proge pri valjanju okroglih palic premerov od �20 mm do �58 mm: oblika in povr{ina kalibra, premer
valjev, kontaktni ~as, ogljikov ekvivalent, temperatura valjanja in koli~ina izvaljanega materiala. Po obrabi valjev se le-ti
mehansko obdelajo – postru`ijo. Pravi razlog za mehansko obdelavo valjev se ni navajal. Za ovrednotenje obrabe valjev smo
uporabili koli~ino materiala, ki se je valjal pred mehansko obdelavo valjev. Za napovedovanje koli~ine materiala, ki se je valjal
pred mehansko obdelavo valjev, smo uporabili linearno regresijo in genetsko programiranje. Oba razvita modela smo ovrednotili
z uporabo podatkov iz leta 2014. Analiza je pokazala, da se zmo`nost napovedovanja pri neupo{tevanju utrujenostnih napak
drasti~no izbolj{a. Rezultati so prakti~no uporabni pri napovedovanju obrabe valjev ter posledi~no vzdr`evanju valjev v skladu s
plani valjanja.
Klju~ne besede: obraba valjev, vro~e valjanje, napovedovanje, linearna regresija, genetsko programiranje

1 INTRODUCTION

During the hot rolling of long bars the roll with the
grooves allows for dimensional changes to the rolled
bars. Due to the constant contact between the hot-rolled
material and the cooled roll, the surface of the latter
gradually wears out. Also, surface cracks can occur due
to temperature gradients influenced by thermo-mecha-
nical-tribological rolling conditions (e.g., roll and rolled
material, coolant temperature, rolling speed). Conse-
quently, one must determine influences that the rolls
have on the surface defects of rolled material.1–5 Accord-
ingly, knowing about roll wear is essential.

Practical approaches for roll wear reduction during
hot rolling can be classified as:

• changing existing roll material,6

• using roll surface coatings,1,3

• using lubricants,2,4,7,8

• changing roll geometry (i.e. grooves)9–12

• using different rolling regimes.2,13–16

Though there are several well-known mathematical
models for roll wear (i.e., Archard, Yasada, Lim and
Ashby, Sibakin, Oike, Somers, Tong and Chakko),1,3 but
none of them can be used practically in an industrial
environment, where the specifics of several different
steel grades and where different rolling regimes are pro-
duced and bound to delivery dates, come into play.

In our extremely flexible industrial environment, the
following were analyzed during a one-year period: the
influences of groove geometry, its area, roll diameter,
contact time, carbon equivalent of rolled material (more
than 200 serially produced different steel grades), rolling
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temperature and quantity of the rolled material on the
wear of roll of the first stand of the continuous roll mill
for long round bars (diameters from �20 mm to
�58 mm).

In the paper the experimental setup, including the
industrial environment and the monitored parameter
descriptions, is presented after the introduction. After-
wards, we present the roll wear prediction, represented
as a quantity of the rolled material before the machining
of rolls, using genetic programming and linear regres-
sion. Also, the results and the validation thereof are
commented on. Finally, conclusions are drawn and
directions for future work are outlined.

2 MATERIALS AND METHODS

[tore Steel Ltd. is a small, flexible steel mill where
more than 200 steel grades with varying chemical com-
positions are produced. The scrap is melted in the elec-
tric arc furnace. After tapping, the melt is ladle-treated
and finally cast using a two-strand continuous caster. The
cooled cast billets (180 mm x 180 mm) are reheated up
to 1250 °C and rolled. After exiting the reheating fur-
nace, the material goes through the descaling device and
duo reversible rolling stand with 800-mm-diameter rolls.
The rolled material makes 7 passes. The final rolling
diameters achieved using the same rolling stand range
from �95 mm to �110 mm.

Before it enters the continuous rolling line with 460
mm diameter rolls (700 mm length), the material is
rolled using a duo reversible rolling stand with
650-mm-diameter rolls. After exiting the duo reversible

stand, after 5 passes (the last is a by-pass), the material
cools down while the rolling temperature is achieved.
The temperature is measured using infrared pyrometer.
Note that the rolling is conducted without lubrication.

The number of passes using the continuous rolling
line:

• �20–36 mm: 9 passes,
• �37–48 mm: 7 passes,
• �50–58 mm: 5 passes.

The continuous rolling line (Figure 1) itself consists
of a descaling device, 6 horizontal and 4 vertical stands,
three hot shears – of which two are used for cutting the
first and the last end of the rolled bar, while the third is
used for cutting the final dimensions before the material
enters the cooling bed.

The continuous rolling line rolls are double-layered
rolls made of steel (outer working layer) and nodular cast
iron (the core). The working layer chemical composition
is presented in Table 1. The same layer consists of pear-
lite and bainite, depending on the required hardness. The
working layer thickness depends on the groove dimen-
sions. In general, 30 mm is added, on the basis of the
grooves’ geometry. The core consists basically of pear-
lite, but within this free cementite and spherical pearlite
could be found.

After rolls of the continuous roll mill wear-out, or
fatigue cracks occur, they are additionally machined
using a turning operation. The machining is conducted in
[tore Steel Ltd. After several machining operations,
reaching the core layer, the rolls should be replaced by
new ones.
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Table 1: Rolls working layer chemical composition

C Si Mn P S Cr Ni Mo
3.0 %–3.8 % 1.0 %–1.8 % 0.3 %–0.8 % <0.060 % <0.020 % 0.5 %–1.2 % 1.0 %–3.0 % 0.1 %–0.5 %

Figure 1: Continuous rolling line



During 2013 the life of rolls of the first stand (Fig-
ure 2) of the continuous roll mill for long round bars
(diameters from �20 mm to �58 mm) was analyzed. The
following parameters were monitored:

• area of the individual groove after machining oper-
ation in mm2 (AG),

• diameter of rolls after machining operation in mm
(DR),

• average contact time in s (TC),
• average carbon equivalent in % (CE),
• average rolling temperature before entering the first

rolling stand in °C (TR),
• quantity of rolled material before using machining

operation in kg (Q’).
After the rolls wear out, the removal of the affected

area is conducted using a machining process. The remo-
val depth depends on the severity of the affected area. It
must be emphasized that detailed information about the
root cause for the machining of rolls was not available.

Table 2 shows the reduction of roll diameter (DR)
and the area of the grooves on the first stand of the conti-
nuous rolling line (AG) during the roll life cycle (before
replacement).

Table 2: The area of the individual groove after the machining oper-
ation (practical example of roll life cycle)

Roll
diameter

OV60/1
(mm2)

OV70/1
(mm2)

OV70/2
(mm2)

OV70/3
(mm2)

OV85/1
(mm2)

�460 122859 142267 148647 157561 166376
�419 111327 128786 134473 142394 150459
�418 111046 128457 134127 142024 150071
�416 110484 127800 133436 141284 149295
�413.8 109865 127076 132675 140470 148441
�412.3 109443 126583 132156 139916 147859
�410 108796 125827 131361 139065 146966
�407.3 108037 124939 130428 138066 145918
�405.2 107446 124249 129702 137289 145102
�403 106827 123525 128941 136475 144248
�400.5 106124 122703 128077 135550 143278

The contact time is the time between the workpiece
entering and exiting the deformation zone. This time is
calculated using the following equation:

t
l

vc = , where l is contact length (1)

l R h= ⋅Δ , where R is roll radius, (2)

�h = h0 – h1, where h0 and h1 are the effective heights
of the ingoing and outgoing workpiece, (3)

v
v

R f

r

ii

n=
∏ _

, where (4)

v is the roll circumferential speed, vr is the rolling speed
and R_fi are the reduction factors for a calculation of the
rolling speed at the i-1 stand. For instance, the reduction
factors for rolling of round bar �21 mm using conti-
nuous rolling line in [tore for stands H1, H2, V3, H4,
V5, H6, V7, H8 and V9 are 1.189, 1.144, 1.286, 1.191,
1.148, 1, 1, 1 and 1, respectively.

The following equation for carbon equivalent (CE), a
single-number value which covers several influential
alloying chemical elements, was used:17
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+

+

+
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+
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Selected parameters, collected during the 2013
annual production, are presented in Table 3.

Table 3: Selected parameters, collected during the 2013 annual pro-
duction

Area of the
individual

groove after
machining

operation in
mm2 (AG)

Diameter of
rolls after
machining

operation in
mm (DR)

Average
contact

time in s
(TC)

Average
carbon

equivalent in
% (CE)

Average
rolling

temperature
before

entering the
first rolling
stand in °C

(TR)

Quantity of
rolled

material
before using
machining

operation in
kg (Q’)

111327 419.0 0.0506 0.699 930 776725
134473 419.0 0.0596 0.739 930 1199800
128786 419.0 0.0591 0.825 930 2325295
142394 419.0 0.0699 0.763 930 738240
134473 419.0 0.0561 0.789 930 356043
150459 419.0 0.0626 0.715 930 535983
111046 418.0 0.0482 0.681 930 1153125
134127 418.0 0.0600 0.698 930 2145300
128457 418.0 0.0577 0.830 930 1514790
142024 418.0 0.0664 0.853 930 678110
150071 418.0 0.0605 0.705 930 456370
109865 413.8 0.0505 0.666 930 1369770
132675 413.8 0.0588 0.752 930 2210725
148441 413.8 0.0564 0.709 930 143935
139989 412.5 0.0699 0.813 930 745308
126649 412.5 0.0582 0.818 930 2497160
139989 412.5 0.0579 0.672 930 232620
132225 412.5 0.0590 0.825 930 744396
147936 412.5 0.0643 0.762 930 619500
109499 412.5 0.0497 0.674 930 1209050
132225 412.5 0.0602 0.738 930 1217867
108796 410.0 0.0580 0.778 930 1366531
139065 410.0 0.0671 0.797 930 716430
131361 410.0 0.0608 0.838 930 645393
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146966 410.0 0.0557 0.632 930 159770
108796 410.0 0.0492 0.683 930 1136585
131361 410.0 0.0597 0.735 930 3848941
124939 407.3 0.0580 0.781 930 1134305
138066 407.3 0.0697 0.822 930 594478
130428 407.3 0.0610 0.771 930 363901
145918 407.3 0.0685 0.638 930 103334
108037 407.3 0.0494 0.634 930 1420125
130428 407.3 0.0587 0.724 930 2005551
124249 405.2 0.0568 0.798 890 1333585
137289 405.2 0.0675 0.843 890 804196
129702 405.2 0.0582 0.765 890 544345
145102 405.2 0.0616 0.693 890 603295
107446 405.2 0.0511 0.654 890 1127800
129702 405.2 0.0591 0.728 890 1956695
123525 403.0 0.0575 0.858 930 1637455
136475 403.0 0.0640 0.856 930 370090
128941 403.0 0.0546 0.798 930 253489
144248 403.0 0.0597 0.741 930 179320

3 RESULTS

On the basis of the collected data (Table 4), the pre-
diction of the quantity of rolled material before the
machining of the rolls was conducted using linear
regression and genetic programming. For the fitness
function � average relative deviation between predicted
and experimental data was selected. It is defined as:

Δ =

−
=∑ ( )’

’

Q Q

Q

n

i i

i
i

n

1

(6)

where n is the size of monitored data and Q’i and Qi are
the actual and the predicted quantities of the rolled
material before the machining of rolls, respectively.

3.1 Linear regression prediction

On the basis of the linear regression results, it is
possible to conclude that the model does not predict in a
significant manner the quantity of rolled material before

the machining of the rolls (p>0.05, ANOVA) and that
only 19.43 % of the total variances can be explained by
the independent variables’ variances (R-square). The
only significantly influential parameter (p<0.05) is the
area of the individual groove after machining (AG). The
linear-regression model is:

Q = –31.45·AG + 27377·DR + 18891118·TC +
+ 1140389·CE – 3227·TR + 5072217 (7)

Its relative deviation from the experimental data is
71.10 %. The calculated influences of the individual
parameters (individual variables) on the quantity of
rolled material before the machining of the rolls are
presented in Figure 3. It is possible, on the basis of the
same figure, to conclude that the area of the individual
groove after machining is most influential.

3.2 Genetic programming prediction

Genetic programming is probably the most general
evolutionary optimization method.18–20 Evolutionary opti-
mization methods mimic the natural evolution of living
things and can be used for solving different problems
(see, for example21–24). The organisms in genetic pro-
gramming that undergo adaptation are in fact mathe-
matical expressions (models) for predicting the quantity
of the rolled material before the machining of rolls. The
models – that is, computer programs – consist of the
selected function (i.e., basic arithmetical functions) and
terminal genes (i.e., independent input parameters, and
random floating-point constants). Typical function genes
are: addition (+), subtraction (–), multiplication (*) and
division (/), and terminal genes (e.g. x, y, z).

Random computer programs for calculating the
various forms and lengths are generated by means of the
selected genes at the beginning of the simulated evolu-
tion. The varying of the computer programs is conducted
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Figure 4: Crossover operation (out of two parental organisms the off
springs with randomly distributed genetic material are evolved)

Figure 3: Calculated influences of individual parameters on the quan-
tity of rolled material before the machining of rolls using a linear-re-
gression model [kg]



with genetic operations (e.g., crossover, mutation) during
several iterations, called generations. The crossover
operation is presented in Figure 4. After the completion
of the variation of the computer programs a new gene-
ration is obtained. Each result obtained from an indivi-
dual program from a generation is compared with the ex-
perimental data. The process of changing and evaluating
the organisms is repeated until the termination criterion
of the process is fulfilled.

In-house genetic programming system, programmed
using AutoLISP, which is integrated in AutoCAD – com-
mercial computer-aided design software, was used.25–27

Its settings were:
• size of the population of organisms: 1000,
• maximum number of generations: 100,
• reproduction probability: 0.4,
• crossover probability: 0.6,
• maximum permissible depth in the creation of the

population: 6,
• maximum permissible depth after the operation of

crossover of two organisms: 10,
• smallest permissible depth of organisms in generating

new organisms: 2.
The genetic operations of reproduction and crossover

were used. For the selection of organisms the tournament
method with tournament size 7 was used.

The AutoLISP based in-house genetic programming
system was run 100 times in order to develop 100 inde-
pendent civilizations. Each run lasted approximately
1 min on a I7 Intel processor and 8 GB of RAM.

The best mathematical model obtained from 100 runs
of the genetic programming system is:
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Figure 5: Calculated influences of individual parameters on the
quantity of rolled material before the machining of the rolls using the
genetic programming model [kg]



Its relative deviation from the experimental data is
43.93 %, which is 1.62-times better than a linear regres-
sion model. The calculated influences of the individual
parameters (individual variables) on the quantity of
rolled material before the machining of the rolls are pre-
sented in Figure 5. Based on the same figure it is possi-
ble to conclude that the roll diameter after machining is
the most influential parameter.

4 DISCUSSION

Based on linear regression and genetic programming
modeling we can conclude:

• both models’ performances are relatively low,
• the most influential parameters (area of the individual

groove after machining operation, diameter of the
rolls after machining operation) depend on the ma-
chining of the rolls and, consequently, additional data
and a precise description of the root cause for ma-
chining of rolls are needed.
Accordingly, additional data was gathered during the

period of an additional year, 2014 (Table 4). In all 16
cases the rolls were machined only due to their having
worn out. No fatigue cracks were noted during the year
2014.

Table 4: Selected parameters, collected during the 2014 annual pro-
duction

Area of the
individual

groove after
machining

operation in
mm2 (AG)

Diameter of
rolls after
machining

operation in
mm (DR)

Average
contact

time in s
(TC)

Average
carbon

equivalent in
% (CE)

Average
rolling

temperature
before

entering the
first rolling
stand in °C

(TR)

Quantity of
rolled

material
before using
machining

operation in
kg (Q’)

142268 460.0 0.0612 0.812 930 946000
122859 460.0 0.0538 0.687 930 1196360
148647 460.0 0.0632 0.741 930 2146800
141347 457.2 0.0617 0.853 930 33195370
165290 457.2 0.0613 0.651 930 6043100
147679 457.2 0.0633 0.745 930 23035450
121341 454.6 0.0516 0.682 930 14102600
146781 454.6 0.0628 0.725 930 17868800
140492 454.6 0.0621 0.767 930 30325250
146781 454.6 0.0619 0.755 930 9038860
164280 454.6 0.0677 0.628 930 6610820
139637 452.0 0.0613 0.812 930 16725950
120609 452.0 0.0517 0.630 930 12177050
145882 452.0 0.0623 0.767 930 29562300
138749 449.3 0.0609 0.839 930 11691900
144948 449.3 0.0624 0.787 930 20959950

The relative deviations from the experimental data of
the linear regression (Equation (7)) and genetically
(Equation (8)) developed model are 55.72 % and
31.56 %, respectively. The improvement in performance
of both models for the quantity of rolled material before
the machining of rolls suggests that the previously
gathered data (from the year 2013) should be filtered out

from instantaneous root causes (e.g., fatigue cracks) and
only roll wear out should be taken into account.

5 CONCLUSIONS

[tore Steel Ltd. is a small, flexible steel mill where
more than 200 steel grades with varying chemical com-
positions are produced. The material is rolled using a
continuous rolling line, which rolls are double layered
and made of steel (outer working layer) and nodular cast
iron (the core).

After roll wear-out – that is, after the rolls became
worn out – they are machined using a turning operation.

In the research the life of rolls of the first stand (Fig-
ure 2) of the continuous roll mill for long round bars
(diameters from �20 mm to �58 mm) was analyzed for
2013. The following parameters were monitored:

• area of the individual groove after machining oper-
ation in mm2,

• diameter of rolls after machining operation in mm,
• average contact time in s,
• average carbon equivalent in %,
• average rolling temperature before entering the first

rolling stand in °C,
• quantity of rolled material before using machining

operation in kg.
On the basis of the collected data (Table 3), the pre-

diction of the quantity of rolled material before the
machining of rolls was conducted using linear regression
and genetic programming. For genetic programming, an
in-house system, programmed using AutoLISP, was
used. For the fitness function average relative deviation
between predicted and experimental data was selected.

The relative deviations from experimental data of
linear regression and genetically developed model are
71.10 % and 43.39 %, respectively. The genetically
developed model outperformed the linear regression
model by 1.62-times. Nevertheless, both models have
relatively poor performance.

Additionally, both models were validated using
additionally gathered data from 2014, but in this case the
data without fatigue cracks were used.

The relative deviations from the experimental data of
linear regression and genetically developed model are
55.72 % and 31.56 %, respectively. The drastically im-
proved performance of both models can be attributed to
filtering the data – the data regarding machining of the
rolls due to fatigue cracks was removed, which also
indicates that both models can be accordingly developed
again.

In the future only data related to roll wear out will be
gathered. Consequently, the relatively precise prediction
of roll wear and roll maintenance, based on the rolling
schedule quantities, will be possible. It must also be
emphasized that the adjusted methodology can be used
in various rolling mill environments.
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