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Characterising a composite using a molecular dynamics (MD) simulation and an ab-initio calculation is promising in terms of
efficiently and accurately uncovering the complicated mechanism of the coupling and interface of the dissimilar materials
therein. This paper provides a systematic analysis of existing studies regarding the application of a MD simulation and an
ab-initio calculation in composite material R&D. Related literature has been searched, coded, and categorised to capture the
distribution and evolution of 22 research topics. Moreover, this study also highlights some of the MD simulation and ab-initio
calculation studies, and concludes with a status-quo summary and next round research hotspot prediction.
Keywords: composite, molecular dynamics simulation, ab-initio calculation, literature analysis

Karakterizacija kompozita z uporabo simulacij na osnovi molekularne dinamike (MD) in ab-initio izra~un sta s stali{~a
u~inkovitosti in natan~nosti obetajo~a postopka pri odkrivanju kompliciranih mehanizmov zdru`evanja in sobivanja po
lastnostih med seboj razli~nih materialov. Avtor podaja sistemati~no analizo obstoje~ih {tudij, ki se nana{ajo na uporabo MD
simulacij in ab-initio izra~unov v raziskavah in razvoju (R&D) kompozitnih materialov. Tovrstno literaturo je raziskal, kodiral
in kategoriziral, da bi zajel in razvil 22 razli~nih raziskovalnih tem. Nadalje osvetljuje nekaj {tudij MD simulacij in ab-initio
izra~unov, zaklju~uje pa s povzetkom obstoje~ega stanja ter napoveduje najbolj aktualne teme prihodnjih raziskav.
Klju~ne besede: kompozit, molekularna dinamika, simulacija, ab-initio izra~un, analiza literature

1 INTRODUCTION

Composites are not only the combination of different
materials, but also the synergy of excellent perform-
ances. The undoubted advantages of composites over
other single-component materials push composites
forward under the spotlight of both industry and acade-
mia. However, composite studies are not easy, owing to
the complicated mechanism of the coupling and interface
of the dissimilar materials therein, as well as the large
number of the potential pairings of constituents.

One efficient way of quantifying the phenomenon
and probing the mechanism of composites is by leve-
raging a molecular dynamics (MD) simulation and/or an
ab-initio calculation. A molecular dynamics simulation
treats atoms as particles and studies their motion and
interactions through the molecular force field,1 which is
calibrated using experimental observations.2 An ab-initio
calculation refers to applying density function theory to
forecast interatomic behaviours,3 which originates from
quantum mechanics and involves some simplification to
allow an efficient numerical computation.4 The bottom-

up philosophy embedded in these methods ensures the
accuracy of the prediction results.

Although a MD simulation and an ab-initio calcul-
ation have become common practices in composite
material R&D, there has not been a systematic literature
analysis that summarises what has been achieved and
what to expect. Yet such an analytical study is extremely
meaningful in that it consolidates the currently scattered,
isolated, and perhaps inconsistent researches, and traces
the evolution of the topic’s popularity over time.

Based on the above background, this study aims at
systematically analysing existing studies regarding the
application of a MD simulation and an ab-initio calcul-
ation in composite material R&D. More specifically, it
unfolds as follows. The method and scope section
describes in detail the literature searching and coding
process. The literature statistics section reports the
categorised research topics and their trend of evolution.
The next two sections highlight some of the MD
simulation and ab-initio calculation studies. The final
section concludes the review with a status-quo summary
and next round research hotspot prediction.
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2 METHOD AND SCOPE

2.1. Literature source and searching

The investigated literature in this study was retrieved
from either the China National Knowledge Infrastructure
(CNKI, a Chinese academic database)5 or the Web of
Science.6 The search terms include "composite", "mole-
cular dynamics simulation", "ab initio", "first principle",
DFT, and their Chinese counterparts. From the search
results, the title, year, and abstract of each paper were
recorded for further screening.

2.2. Literature screening and coding

Two researchers performed the literature screening
and coding task, with a third researcher to reconcile
disagreements. Literature screening involves removing
irrelevant or duplicated papers. To be more specific, if a
paper mentions "composite" in its abstract but the "com-
posite" does not refer to a material, the paper is
excluded. Literature coding has three steps. (1) Identify
the major topic of each paper from its title and abstract.
(2) Combine similar topics to reduce the number of
topics. (3) Categorise topics according to their closeness
of discipline.

3 LITERATURE STATISTICS

3.1. Basic statistics

A total of 274 papers were retrieved from CNKI,
while 148 were retrieved from Web of Science. After
screening, irrelevant papers were excluded, leaving 222
and 86 papers, respectively, covering the years 1996 to
2017.

3.2. Research topics

The major topic of each paper was first identified,
then combined, and finally categorised according to their
closeness in discipline. For MD simulation papers, 9
topics were summarised and classified into 3 groups.
Group 1 is physical property, including elasticity and
plasticity, interfacial strength, viscoelasticity, and glass
transition. Group 2 is physical process, covering mole-
cular transfer and heat transfer. Group 3 is conformation,
involving dispersion and assembly, defect and disloca-
tion, and phase transfer and crystallisation.

Figure 1 reports the distribution of each MD simu-
lation topic. Elasticity and plasticity, interfacial strength,
molecular transfer, and dispersion and assembly are the 4
most studied topics. These are all typical and important
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Figure 2: Topic distribution of ab-initio calculation papers

Figure 1: Topic distribution of MD simulation papers



molecular level problems that are relatively easy to
model and straightforward to demonstrate.

Similarly, 13 ab-initio calculation topics and their
numbers are displayed in Figure 2. Group 1 is chemical
property, incorporating interfacial strength, phase stabi-
lity, formation energy, and electronic structure. Group 2
is chemical process, including adsorption, electron trans-
fer, hydrogen storage, and ion transfer. Group 3 is func-
tion, covering catalyst and photo-catalyst, electromagne-
tism, dielectric, field emission, and piezo electricity.
Among them, interfacial strength, adsorption, and
catalyst and photo-catalyst are the most popular.

3.3. Research trends

Besides the distribution of topic over disciplines, the
coding process also reveals the evolution of topics over
time. For each topic group, the number of papers therein
was summed according to their year of publication. The
years were divided into 4 stages, namely 1996–2008,
2009–2011, 2012–2014, 2015–2017. Figure 3 shows the
topic trend of MD simulation papers. The increment of

the number of MD simulation studies stopped growing
during 2015–2017. More specifically, whereas there is
still a growing increment of physical property studies,
new papers discussing physical process and conforma-
tion are reducing, indicating the maturity of MD
simulation in solving these two problems, which results
in fewer reports.

The topic trend of ab-initio calculation papers is
plotted in Figure 4. Despite the decrease of new papers
focusing on chemical process, the popularity of chemical
property characterisation, functional application, as well
as ab-initio calculation as a whole, is constantly growing.
Therefore, future composite studies are expected to rely
more on ab-initio calculations than molecular dynamics
simulations.

4 MD SIMULATION HIGHLIGHT

In this section, a selection of the MD simulation
studies is highlighted, which covers the aforementioned
9 topics.

4.1. Elasticity and plasticity

Elasticity is the ability of a material to resist
geometric deformation, whereas plasticity describes the
state of the mechanically loaded material that undergoes
unrecoverable deformation. These are the fundamental
properties of composite materials. The MD simulation
starts with preparing a piece of material to be loaded,
which normally contains several hundred atoms,
followed by deforming the material in a tensile, shear, or
compressive manner,7–9 and ends with recording the
resultant stress. Typical elastic and plastic properties and
behaviours include Young’s modulus, bulk modulus,
shear modulus, Poisson’s ratio, yield stress, yield strain,
compressive strength, softening and hardening, and frac-
ture strain.10–15 Buckling and negative stiffness are also
studied.16,17

4.2. Interfacial strength

The interface is ubiquitous in a composite material.
Interfacial strength is the maximum load-carrying
capability of the boundary of two constituents against
separation load. The separation load is either normal to
the interfacial plane, or tangential, such as fibre pull-
out.18–20 The simulation first builds the atomistic model
of the studied interface, then deforms it in a tensile or
shearing form, and finally measures the load displace-
ment response. In this way, the interfacial strength and
energy are obtained. By shearing the interface, resear-
chers have further studied its friction and abrasion
properties.21,22 There is yet a simpler approach to study
the composite interface by means of calculating the
difference of free energy.23,24 However, only interfacial
energy can be obtained in this way, with the strength
information missing.
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4.3. Molecular transfer

Molecular transfer investigates the diffusion of gas or
liquid molecules into, within, and out of a medium,
which can be a membrane, a nano-tube, or a bulk.25–27

Accurately predicting the molecular-transfer properties
helps researchers design and optimise gas and liquid
separation materials.28–30 The diffusion simulation can be
either free due to Brownian motion or compelled driven
by pressure difference. Either way, the simulation first
establishes the molecular framework of the diffusion
media, then places a number of gas or liquid molecules
into the framework, and finally observes the trajectory of
these molecules under controlled temperature and
pressure. The most widely used index to characterise
diffusion is the mean square displacement,31 which
measures the distance over which a molecule travels
within the simulation time window.

4.4. Dispersion and assembly

Composite synthesis always involves the compati-
bility,32,33 dispersion,34,35 aggregation,36,37 and assemb-
ly38,39 of materials. These conformational processes are
critical in achieving ideal performance for the ultimate
mixture. The corresponding MD simulation begins with
situating the constituents in their initial position and
orientation, followed by relaxing the system to reach
minimum energy, and ends with quantifying the confor-
mation using statistical tools. Usually, a subsequent
simulation is performed to validate whether the opti-
mised conformation indeed contributes to improved
thermal or mechanical properties.

4.5. Other minor topics

4.5.1. Viscoelasticity

Viscoelasticity describes the nonsynchronous
variation of stress and strain, resulting in relaxation,
creep, or damping properties of viscoelastic materials.
Industry has been keen on applying damping composites
to absorb excessive vibration energy. Meanwhile, pre-
venting composite structural failure from relaxation or
creep is also of great importance. All these viscoelastic
behaviours can be simulated using MD by controlling
the profile of the stress and measuring the change of
strain, or vice versa.40–44

4.5.2. Glass transition

Glass transition is the change of a material from a
glassy state to a rubbery one when the temperature
increases from below to above a certain temperate
(range), or glass transition temperature. In the glassy
state, the material is more rigid, whereas in the rubbery
state, the material is more easy to deform. Glass transi-
tion is common for polymer and polymer-based com-
posites. The MD characterisation of a material’s glass
transition is realised by capturing the sudden change of

the volumetric- or diffusion-related property over a
temperature sweep.45–46

4.5.3. Heat transfer

Heat transfer is a common phenomenon in composite
applications,47,48 whether to improve the heat exchange to
reduce the energy loss,49 or to arrest heat to concentrate
energy.50 In both situations, the simulation is performed
by first preparing the material or interface to be studied,
then configuring the temperature inside the material and
on the boundary, and finally examining the evolution of
the temperature field.

4.5.4. Defect and dislocation

A defect is one kind of imperfection in a crystalline
composite that can lead to degraded mechanical perform-
ance. A dislocation is another kind of crystal imperfec-
tion that forms when mechanically loaded. Both defect
and dislocation, after inclusion or initiation, can grow,
displace, aggregate, or heal upon further loading.51–54

Therefore, in order to maintain a material’s strength and
toughness, it is very necessary to study the behaviour,
mechanism, and consequence of defect and dislo-
cation.55–57 To this end, in MD simulation, the crystal
structure of the studied material is established, with a
defect inserted if this applies. Afterwards, the material is
mechanically deformed, and the crack is expected to
initiate around the defect or the dislocation. By observ-
ing the failure mode, and subsequently introducing
defect-eliminating or crack-stopping mechanisms, the
material can reach optimal performance.

4.5.5. Phase transfer and crystallisation

Phase transfer, especially crystallisation, happens in
composites usually when the temperature changes over a
pivotal value.58,59 In such a process, a relatively large
amount of heat is absorbed or released, which is useful
in heat- and temperature-management applications.60,61 A
MD simulation for phase transfer starts from building the
crystal structure of the material(s), goes on with
adjusting the temperature, and finishes by observing the
appearance, disappearance, separation, or coalescence of
the phases.

5 AB-INITIO CALCULATION HIGHLIGHT

This section highlights the selection of the ab-initio
studies, covering the aforementioned 13 topics.

5.1. Interfacial strength

Interfacial strength is the most frequently studied
topic for ab-initio composite studies. Unlike a MD simu-
lation (see Section 4.2), an ab-initio calculation, albeit
less computationally efficient, explores not only the
separation energy of the interface, which is realised by
calculating free energy,62,63 but also the intrinsic
mechanism of interfacial bonding by means of electron
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level analysis, incorporating chemical bond population,
atomic relaxation, and charge distribution.64–68

5.2. Adsorption

Adsorption is the accumulation of gases, liquids, or
solutes on the surface of a solid or liquid. Adsorption is
usually the first step of a chemical reaction that happens
on a composite surface. The adsorbent can be a proton,
an atom, a radical, a gas molecule, or a liquid mole-
cule.69–74 Moreover, an ab-initio calculation can also deal
with interface or hydrophilicity problems in a more
meticulous way.75,76 An ab-initio adsorption calculation
is similar to an interfacial strength calculation, which
mainly investigates the difference of the total free energy
after adsorption.

5.3. Catalyst and photo-catalyst

A catalyst is a material that can reduce the energy
barrier of a chemical reaction and thereby accelerate the
reaction. To produce the catalysing effect, the material
needs to have an elaborate electron structure such that
the reactant can adsorb easily; the intermediate product
can move freely, and the resultant can leave without
lingering.77–81 A composite allows customising of the
electron structure by carefully combining the consti-
tuents. A photo-catalyst is a special kind of catalyst that
has a finely tuned band gap, sometimes called a hetero-
junction, such that the electron-cavity configuration can
produce photoabsorption or photoresponse.82–86

5.4. Other minor topics

5.4.1. Phase stability

Metal composites have new phases formed during
alloying, doping or oxidation.87–91 An accurate estimation
of the stability of these phases will benefit the design and
synthesis of metal composites. An ab-initio calculation is
able to compare the free energy of all possible inter-
phases, eliminate the less probable ones, and recommend
the most likely compositions.

5.4.2. Formation energy

Formation energy is the energy required to form a
new composite material from its previous state by
sintering, oxidation, in-situ reaction, precipitation, or
other synthesising methods.92–98 A lower formation
energy indicates easier formation. An ab-initio forma-
tion-energy calculation is also viable by computing the
difference in the free energy before and after formation.

5.4.3. Electronic structure

The electronic structure can provide the fundamental
explanation to most chemical processes. Therefore, a
calculation of the conduction band, valence band, band
gap, density of state, and certain spectrums has been a
basic and important practice in ab-initio studies.99–102

5.4.4. Electron transfer

The electron transfer process in a composite
determines the thermal and electrical conductivity of the
material.103–105 Election transfer can happen in a crystal
composite, on the surface of a composite, or across the
interface between constituents.106–108 By investigating the
electronic structure of the different transfer passages
using an ab-initio calculation, the conductivity of the
materials is compared.

5.4.5. Hydrogen storage

Efficient hydrogen storage is crucial for the mass
utilization of hydrogen energy, which features reprodu-
cibility and zero pollution. A hydrogen-storage solution
other than a high-pressure vessel is via material-based
mechanism involving metal atom-doped nano tube, nano
plate, or covalent organic framework.109–111 Material-
based hydrogen storage is basically an adsorption
problem.112 Consequently, by calculating the decrease in
the total free energy after hydrogen adsorption, the
ability of the adsorbate is quantified.

5.4.6. Ion transfer

Ion transfer in composites is found in a composite-
based lithium ion battery, where the lithium ion is
inserted or extracted from the anode, cathode, or electro-
lyte materials made of composites.113–115 An ab-initio
calculation facilitates the characterisation of the lithium
ion migration channel, such that the material can be opti-
mised to guarantee the least ion transfer resistance.

5.4.7. Electro-magnetism

Composite electro-magnetism is useful in data sto-
rage and many other applications.116 Electro-magnetism
manifests as diamagnetism, ferromagnetism, multi-
ferroics, ferroelectricity, and electronic controlled
magnetism.117–119 Electro-magnetism results from un-
paired electrons or from local defects.120,121 By inspecting
the density of state and electron spinning using an
ab-initio calculation, the electro-magnetism of composite
materials can be characterised.

5.4.8. Dielectric

Composites with excellent dielectric properties are
potential candidates for insulators.122,123 The dielectric
properties of a material mainly refer to the intensity of
polarisation and the breakdown strength when subjected
to an electric field.124,125 An ab-initio calculation is able
to examine the change of the electronic orbit or the cova-
lent bond distribution of a material in an electric field,126

and thereby obtain the dielectric properties.

5.4.9. Field emission

Field emission is the emission of electrons from a
cathode composite material when subjected to a strong
electric field. It is evaluated by the number of electrons
per unit time, and can be characterised by the binding
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energy, ionization energy, and work function, which are
computable using an ab-initio calculation.127–129

5.4.10. Piezoelectricity

Piezoelectricity refers to the generation of electricity
or of electric polarity in dielectric crystalline composites
subjected to mechanical stress, or the generation of stress
in such crystals subjected to an applied voltage.130 Hard-
ness and piezoelectric constant are the two most im-
portant properties of a piezoelectric material.131 An
ab-initio calculation can perform elastic constant and
energy band simulation, which enables the prediction of
the hardness and the piezoelectric constant.

6 CONCLUSIONS

Quantifying the phenomenon and probing the
mechanism of composites by means of a MD simulation
and/or an ab-initio calculation are promising in terms of
feasibility and efficiency. This paper analyses relevant
papers using literature coding and summarises the
distribution and evolution of segmented research topics.
The findings suggests that:

(1) For a MD simulation, elasticity and plasticity,
interfacial strength, molecular transfer, and dispersion
and assembly are the 4 most studied topics.

(2) For an ab-initio calculation, interfacial strength,
adsorption, and catalyst and photo-catalyst are the most
popular topics.

(3) Future composite studies will focus more on the
ab-initio method, especially chemical property prediction
and functional applications.
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