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The machining of multi-layer metal materials is an important manufacturing activity in the sheet-metal-forming-tools industry.
The process to make these advanced and difficult-to-cut materials is laser engineered net shaping (LENS). It uses a laser to melt
metal powders into structures layer by layer, based on a developed computer-aided design (CAD) model. Despite the very good
achievements of laser cladding regarding surface roughness and surface corrugation, it is still necessary to after-machine the
deposited layers by employing grinding processes. The grinding process is time consuming; therefore, in this research the
grinding is replaced with end-milling. The first goal of this research was to determine the influence of the LENS process
parameters on the resulting roughness of the produced surface. The second, main goal of this research was to determine the
minimum required depth of milling that is needed to obtain the desired surface quality of N6 grades or better. Knowing the
thickness of the deposited layer is fundamental for determining the minimum required depth of cutting. Therefore, software
using cross-section metallographic images of deposited layers for measuring the layer thickness was developed. It is able to
recognize the multi-layer bounds and measure the thickness of a separate compact layer with an error of 1.6%. The research
employs an artificial neural network (ANN) for predicting the produced surface roughness and the minimum required depth of
milling during the machining of 16MnCr5/316L four-layered metal material with a ball-end mill. The experimental results
demonstrate that this method can accurately predict the surface roughness with an average prediction error of 3.7%.
Keywords: surface roughness, depth of milling, prediction, ANN, multi-layered metal material, layer thickness.

Obdelava ve~- slojnih kovinskih materialov z odrezovanjem je pomembna proizvodna dejavnost v industriji izdelave orodij za
preoblikovanje plo~evin. Ti napredni in te`ko obdelovalni materiali se izdelajo s postopkom laserskega nana{anja kovinskih
slojev (LENS). Postopek uporabi laser za taljenje kovinskih pra{kov v strukturo sloj za slojem na podlagi izdelanega 3D
modela. Kljub zelo dobri dose`eni hrapavosti in valovitosti nakladane povr{ine, je potrebno nalo`en sloj naknadno obdelati s
postopkom bru{enja. Postopek bru{enja je zamuden, zato je v tej raziskavi bru{enje nadome{~eno z oblikovnim frezanjem. Prvi
cilj te raziskave je bil ugotoviti vpliv LENS procesnih parametrov na hrapavost proizvedene povr{ine. Drugi glavni cilj
raziskave je bil dolo~iti najmanj{o potrebno aksialno globino frezanja, ki je potrebna za dosego N6 kvalitete povr{ine. Za
dolo~itev minimalne potrebne globine rezanja je bistveno poznavanje debelin nakladanih slojev. Zato je bila razvita programska
oprema, ki na osnovi metalografskih slik prerezov nakladanih slojev izmeri debelino sloja. Programska oprema zna prepoznati
meje med sloji in izmeri debelino posameznega sloja z napako 1,6 %. V raziskavi je uporabljena umetna nevronsko mre`a za
modeliranje in napovedovanje proizvedene hrapavosti povr{ine ter minimalne potrebne globine frezanja med obdelavo
{tiri-slojnega kovinskega materiala 16MnCr5 / 316L s krogelnim frezalom. Rezultati eksperimentiranja so potrdili, da lahko ta
metoda natan~no napoveduje hrapavost povr{ine s povpre~no napako napovedovanja 3,7 %.
Klju~ne besede: hrapavost povr{ine, globina frezanja, napoved, nevronska mre`a, slojeviti kovinski material, debelina sloja

1 INTRODUCTION

The laser-based deposition of difficult-to-machine
metal materials with the Laser Engineered Net Shaping
(LENS) process is becoming a widespread technique for
the modification of forming tools engravings for the
automotive industry.1 The LENS process uses a laser to
melt and apply metal powders to an existing tool
engraving layer after layer based on a computer-aided
design (CAD) model. To prevent oxidation, the depo-
sition process of metal materials is carried out in an
argon-filled chamber. In the tool-making industry,
combinations of multilayer materials made of nickel

alloys, titanium alloys, cobalt-chromium alloys and
stainless steel are most commonly used.2–4 Ahn worked
out prototype engravings of forming tools and plastic
injection-moulding tools using laser deposition.5 It
exposes the difficulty of achieving the desired surface
quality of the engravings.

LENS is still a developing technology and optimal
process parameters, such as laser power P and cladding
speed c (speed of laser head) are usually determined
based on a technologist’s experience in order to produce
the desired layer thickness.

The laser power P and the cladding speed c have an
impact on the hardness HV and thickness d of the
manufactured layer in a multi-layered metal material.
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U. Zuperl,6 in his research, investigated the impact of
lens parameters on the hardness and thickness of a man-
ufactured 16MnCr5/316L four-layered metal material.
Taberenro and Calleya published research in which they
provide the optimal lens parameter settings to achieve
the desired microstructure.7,8

Furthermore, the laser power and cladding speed are
closely related to the surface quality of the deposited
layer. They have a significant influence on the surface
roughness produced during the manufacturing of these
advanced materials. Therefore, there is a practical
interest to investigate the impact of the LENS process
parameters on the surface roughness of the manufactured
layer. The first objective of this research was to analyse
the influence of the LENS machine parameters on the
resulting roughness of the produced surface. Using the
results of the analysis, research employs an artificial
neural network (ANN) to estimate the surface roughness
produced with the LENS process. The ANN predictive
capabilities are used to capture the highly nonlinear
relationship between the LENS process parameters and
the surface roughness. The surface-roughness prediction
model merged with the minimum axial depth of the
cutting predictions is presented in Section 2.

Many models have been developed to predict the
surface roughness in milling. These include classic
statistical approaches as well as fuzzy systems, ANNs
and genetic algorithms.9–13 A few ANN and adaptive
neural fuzzy inference (ANFIS) based surface-finish
prediction models have been proposed, but no evidence
of research efforts that attempts to model the surface
roughness in the milling of the laser-based metal
deposition (LBMD) materials has been found.14

Despite achieving a very good surface quality and
surface corrugation during laser cladding, it is still
inevitability to after-machine the deposited layers by
employing grinding processes. However, a grinding pro-
cess changes the microstructure due to a local increase of
the heat input. The microstructure changes are reflected
in the poor mechanical properties of the deposited layers.
The grinding process is also time consuming; therefore,
there is a practical interest in replacing the grinding
process with the more efficient high-speed ball end-mill-
ing. Due to the inhomogeneous structure of the multi-
layered metal materials, the milling of these materials
leads to undesirable effects, such as tool breakage, rapid
cutting-tool wear and surface deterioration.

The challenge in the precise milling of laser-depo-
sited metal layers is to determine the appropriate axial
depth of the cutting according to the LENS process
parameters in order to achieve the desired surface
roughness of the corrected forming tool engravings.

Therefore, the second main goal of this research was
to determine the minimum required axial depth of
milling AD min, which is needed to obtain the desired
surface quality of N6 grades or better. For this purpose,

the ANN was trained in this research to estimate the
AD min based on the input LENS process parameters.

The minimum milling depth of cutting for each
multi-layer workpiece is equal to the distance between
the maximum and the lowest point of the surface profile.
Especially in ball end-milling, knowing the thickness of
the deposited layer is fundamental for the optimum axial
depth of milling determination. The precise measure-
ment of the deposited layer thickness would help to
determine the AD min. Nowadays, the layer thickness of
the multi-layered materials is measured manually, from
the prepared metallographic microscopic images. This
procedure is time consuming and laborious. Therefore,
measurement software was developed to simplify this
procedure. The developed software uses cross-section
metallographic images of the deposited layers for the
thickness measuring. Due to the encouraging test results,
a graphical interface was also developed and embedded
into the measurement software. There has been no
published research on inspecting the layer thickness of
multi-layered materials using visual measurement sys-
tems.

Recently, some optical measurement systems to
inspect the surface roughness of the machined piece
were developed.15 One system employs a machine-vision
system to inspect the machined surface roughness.16

Another uses fibre-optics to measure the diffuseness in
the reflected light from the surface.17 Coman in his
research outlines the application of distance measuring
with Matlab/Simulink.18 Jovanovi~ developed a measure-
ment program and user interface in LabView for visual
inspections with a commercial web camera.19 However,
all the mentioned vision-based measuring systems are
limited to the laboratory environment.

The rest of the paper is organized as follows. The
model for estimating the produced surface roughness and
minimum required depth of milling is presented in
Section 2. The developed software for measuring the
deposited layer thickness is described in the third
section. The fourth section presents the experimental
set-up and the results outlined in the fifth section. The
conclusions are drawn in the final section.

2 PREDICTIVE SURFACE ROUGHNESS AND
MINIMUM REQUIRED DEPTH OF MILLING
MODELLING

The goal of this research is to develop a methodology
for predicting the surface roughness average produced
during the ball-end milling of four-layered metal
materials and the minimum required depth of milling,
which is needed to obtain the desired surface quality of
the N6 grade (surface roughness of 0.8 μm). This section
outlines the adaptation of the ANN topology to the
surface roughness Ra and the minimum required depth-
of-milling prediction problem. To carry out the modell-
ing of the surface roughness average and minimum
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required depth of milling, the popular, four-layer
architecture of a feedforward neural network is used
based on a back-propagation learning algorithm. The
developed ANN has two input neurons for modelling:
laser power P and the cladding speed c. The number of
hidden layers, the optimum number of neurons in the
individual hidden layer and the training parameters were
determined by simulations. The optimum ANN contains
4 and 3 neurons in hidden layers. The output from the
ANN is the surface roughness average Ra and the
minimum required depth of milling Ad min. Therefore, two
output neurons are necessary. The signals passed through
the neurons in the hidden and output layers are trans-
formed by an ArcTangent activation function. Figure 1
shows a detailed topology of the developed ANN-based
prediction model with a basic flow chart for training/test-
ing.

Four steps are required to develop an ANN-based
model. In Step 1, the training and testing data sets were
introduced to the ANN. Thirty scaled data points were
utilized as the inputs and outputs to train the ANN.
Table 1 presents a list of thirty data used for the training
and testing of the ANN; 30 % of these data (highlighted
sets) were used for ANN testing to verify the accuracy of
the predicted values.

The ANN topology, training parameters were defined
in Step 2 with numerical simulations of 50 various net-
works. The ANN performances were evaluated using the
two criteria: average percentage error (APE) and the
number of training iterations. The obtained satisfactory
network topology and training parameters are outlined in
Figure 1.

In Step 3, the training and testing phase is performed.
Twenty-one sets of experimental data are used to conduct
the 350 iterations of training. The training of the ANN is
stopped when the prediction error reaches its minimum
within 350 training iterations.

After the ANN had been trained, it was applied to 9
additional input-output data pairs that were excluded
from the training process. The predictions were com-
pared to the measurements and the prediction errors were
calculated. Finally, in the fourth step, the trained ANN is
ready to predict the cutting forces.

3 SOFTWARE FOR DEPOSITED-LAYER
THICKNESS MEASURING

In this section, software using cross-section metallo-
graphic images of the deposited layers for layer-thick-
ness measuring is presented. In Matlab the developed
software visually identifies the multi-layer’s bounds and
measures the thickness of a separate layer in the
multi-layered workpiece where several layers of identical
material are deposited on the substrate. The detailed
algorithm of the automated measurement software is
presented in Figure 2. It consists of three parts. The first
part is responsible for image preparation and noise
filtration. The second part finds edges of the analyzed
layer in the metallographic image. The third part
measures the distance between the found edges.

The measurement starts with image reading in jpg
format from the memory. The resolution of the image
must be 1200 × 720 pixels. Then the algorithm transfers
the color image into a grayscale image with "rgb2gray"
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Figure 1: Structure and flow chart of training and employing the neural model for predicting surface roughness and minimal required depth of
milling



command (Figure 3). The image-filtration function is
preformed with three transformation operations: noise
removing, converting image to binary image and small
pixel cleaning. Noise is removed with median filtering in
two dimensions. After the noise reduction, the image is
transferred to a binary image with the "graytresh" com-
mand. Next, the "im2bw" command substitutes all the
pixels in the image with luminance greater than the
computed threshold with the value "1" (white color). The
objects form with perimeter smaller than 8 pixels are
cleaned and extremes are removed with "strel(šdisk’,8)
and "imreconstruct" command during the image-filtra-
tion process. Through the above-mentioned steps, the
image is prepared for edge detection. The command
"edge" is used for this task.

During the edge detection, the algorithm finds the top
and bottom edges (cell) the image matrix employing
"max" and "min" command. The difference between the
top and bottom edges is the layer thickness. This value is
printed in the "Command Window" of Matlab. The
thickness from pixels to micrometers is calculated by
dividing the distance in pixels with the transformation
ratio k, which is determined from the microscope
measurement scale. The quotient between the distance in
pixels and the distance in micrometres is the transfor-
mation ratio k. Figure 3 shows the above-outlined
process of layer thickness measurement on the metallo-
graphic microscopic images.

For an intuitive measurement algorithm a Graphic
User Interface (GUI) is developed. The Matlab "GUI

Quick Start" is used for the creation of the Graphic User
Interface (GUI). The developed GUI is shown in Fig-
ure 4. The GUI consists of three parts. The first part is
located on the left-hand side of Figure 4. It shows the
image that is measured. The layer thickness which is
measured is marked with two parallel lines. The second
part of the GUI is located in the upper right-hand side.
This part shows the measured thickness, both in pixels
and in micrometres. The third part of the GUI is a
drop-down menu for selecting an image for the layer-
thickness measurement.

4 EXPERIMENTAL PROCEDURE AND
EQUIPMENT

To build the ANN prediction model, experimental
results were obtained according to the following pro-
cedure:
1. Thirty four-layered metal workpieces with different

layer thicknesses were produced. LENS process
parameters at 6×5 levels are outlined in Table 1.

2. Thickness d and surface roughness Ra of manufac-
tured layers were measured.

3. The impact of the LENS process parameters on the d
of the manufactured layer was examined.
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Figure 2: Algorithm of layer-thickness measurement

Figure 3: Procedure and result of layer-thickness measurement

Figure 4: Graphical user interface with the layer thickness result for
the LENS machine settings-cladding speed and laser power



4. The minimal required axial cutting depth AD min for
each test workpiece was determined form the sur-
face-roughness profile.

5. Machining tests were carried out to obtain the desired
surface quality of N6 grades or better

6. The results of the measured surface roughness after
machining were stored for future analyses.
The machining experiments were carried out on the

CNC milling machine (type HELLER BEA01), under
dry cutting conditions. The surface roughness was
measured using a 7061 MarSurf PS1 Surface Roughness
Tester. In the measurements of contact stylus instrument,
an 80-mm stylus arm length, a 2-μm-radius conisphere
diamond stylus tip size, a 5.6-mm traversing length, a
4-mm measuring (evaluation) length and a 0.7-mN
measuring force (speed = 1 mm/s) were used. The
profilometer has an 18-nm resolution at 0.18 mm and an
8-nm resolution at 0.09 mm vertical range. The
arithmetic average of the absolute values of roughness
profile was determined by means of the phase-correct

profile filter (Gaussian filter; ISO 11562) with 0.8 mm
cut-off wavelength value and 4L access length of the
tactile profilometer. The profilometer scanned 4 mm in
length. Three fixed spots on each surface, one in the
middle and the other two on the edge, were used to
measure the surface roughness.

The solid ball-end milling cutting tools (Tornado) of
8 mm diameter with two cutting edges, of 29.9° helix
angle and 2.28° rake angle, were used. The ball-end
mills were made of a sintered tungsten carbide material
K88UF with the hardness of 1770 HV. The following
values for the spindle speed and the feed rate were
selected: n = 3000 min–1, f = 200 mm/min.

The workpiece material is made of a 16MnCr5 basic
material and four stainless-steel (316L) layers with a
singular 0.3 mm to 1.0 mm thickness, length of 50 mm
and width of 15 mm. Thirty such belts of stainless-steel
layers were cladded on a singular workpiece with a
60-mm thickness, length of 180 mm and width of 70
mm. By varying the two LENS process parameters, 30
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Figure 5: Experimental set-up

Table 1: 30 datasets for training and testing of ANN; surface roughness and minimum required depth of milling predictions

No.
P

(W)
c

(mm/s)
AD min

(mm)
Ra

(μm)

Ra mea-
sured
(μm)

Error
(%)

No.
P

(W)
c

(mm/s)
AD min

(mm)
Ra

(μm)

Ra mea-
sured
(μm)

Error
(%)

1 300 30 0.22 34.9 33.2 3.10 16 360 30 0.32 29.4 28.1 4.56
2 300 38 0.30 33.9 32.9 3.06 17 360 38 0.39 29.0 27.9 3.86
3 300 48 0.34 33.3 31.3 6.39 18 360 48 0.42 28.2 27.2 3.56
4 300 55 0.42 30.2 29.2 3.59 19 360 55 0.55 26.9 25.2 6.92
5 300 60 0.87 30.7 28.9 6.06 20 360 60 0.70 26.8 24.8 8.00
6 320 30 0.27 32.3 31.3 3.07 21 380 30 0.30 27.0 26.2 3.16
7 320 38 0.32 31.6 30.7 2.92 22 380 38 0.37 27.6 25.8 6.90
8 320 48 0.36 30.4 29.1 4.47 23 380 48 0.23 26.6 25.6 4.01
9 320 55 0.39 28.8 27.8 3.71 24 380 55 0.50 23.7 23.2 2.29

10 320 60 0.89 27.2 26.8 1.64 25 380 60 0.70 24.2 22.8 5.98
11 340 30 0.28 30.2 29.7 1.57 26 400 30 0.22 25.6 24.2 5.96
12 340 38 0.34 29.0 28.6 1.50 27 400 38 0.25 24.4 23.9 2.08
13 340 48 0.39 28.8 27.3 5.53 28 400 48 0.26 23.4 22.5 3.84
14 340 55 0.39 27.4 25.8 6.31 29 400 55 0.46 23.2 22.1 5.02
15 340 60 0.87 25.3 24.2 4.49 30 400 60 0.51 22.4 21.6 3.70

APE (%) 3.70



different test workpieces (30 tests) of the four-layered
metal material with different layer hardness and
thickness were produced on the Optomec LENS 850-R
machine. The overlapping in all layers was set to 40 %.
The diameter of the laser ray was 0.8 mm. The
experimental setup can be seen in Figure 5. The layer
thicknesses d of the manufactured metal material were
measured with a Nikon Epiphot 300 Inverted Metallur-
gical Microscope.

5 RESULTS

Several experimental tests were performed in order to
validate the ANN model for different LENS machine
parameters. A criterion in these tests used to judge the
efficiency of the ANN prediction model was the average
percentage error (APE).

Table 1 lists the input and output of the prediction
model results for the LENS parameters, minimal re-
quired depth of milling and surface roughness.

The results that were obtained from the 30 tests
performed on the LENS machine are also presented in
Figure 6. One plot has been worked out to determine the
variation of two LENS parameters with respect to the
course of AD min.

In this paper, the result of the layer thickness
measurement algorithm was outlined for one metallo-
graphic microscopic image, which is shown on the
left-hand side in Figure 3. This image is the input to the
distance measurement software. Measured thickness d by
using the developed algorithm equals 889.5 μm.

6 DISCUSSION

The input and output of the prediction model results
for the LENS parameters, minimal required depth of
milling and surface roughness are given in Table 1.
Table 1 compares the experimental data and the pre-
dicted values of Ra after the training of the ANN model.
The predicted values are very close to the experimental
measurement values. The results mutually differ from

1.5 % to 8 % for all the cases tested. The average
percentage prediction surface roughness error (APE) is
found to be 3.7 %. The results in Table 1 show that the
ANN model provides good agreement with experimental
results.

In the experiments, it was found that the cladding
speed has the largest impact on the minimal required
depth of cutting AD min when attaining the desired surface
quality of the machined surface. Figure 6 shows that the
AD min decreases linearly when the cladding speed
increases. Figure 6 indicates that the minimal required
depth of cutting AD min increases from 0.22 mm to
0.78 mm when the c increases from 30 mm/s to 60 mm/s
at the constant laser power of 300 W. It can be concluded
that the maximum axial milling depth required to achieve
the desired surface roughness was in the region where
the thicknesses of the deposited layers were the greatest;
this is in the area of minimum laser power and maximum
cladding speed.

A test workpiece with a determined thickness of
920.4 μm is shown in Figure 4. The LENS machine
settings for this test workpiece were: 60 mm/s; laser
power: 360 W. The real thickness of the analysed layer is
912.3 μm. This gives a measurement error of 0.9 %. For
all the other cases, not included in this paper, the error
depends on the layer structure and is 2.6 % for the
compact layers and up to 9.8 % for the less compact
layers.

The distance measurement software needs approxim-
ately 0.5 second to complete the measurement of the
thickness of one deposited layer. The developed software
is able to recognize the multi-layers’ bounds and meas-
ure the thickness of a separate layer in the multi-layered
workpiece where several layers of identical material are
deposited on the substrate. The software requires 1
second to determine the distances between the four-layer
bounds in the four-layered material. Therefore, the
measurement process is fast once the initial metallo-
graphic microscopic images are available in a JPEG file
format.

7 CONCLUSIONS

The main focus of this research is to develop a
reliable method to predict the surface roughness of
manufactured multi-layered metal material and the
minimal required axial depth of milling for obtaining the
desired surface quality of N6 grade. A prototype
software for the visual measuring of the layer thickness
in multi-layered metal materials has been developed and
included in the process of determining the minimal
required depth of cutting.

The following main conclusions can be drawn from
the research:

• The ANN model is able to precisely predict the
surface roughness Ra of deposited layers based on
two LENS process parameters.

U. @UPERL et al.: MINIMUM DEPTH OF MILLING TO OBTAIN THE DESIRED SURFACE ROUGHNESS IN ...

752 Materiali in tehnologije / Materials and technology 54 (2020) 6, 747–753

Figure 6: Impact of LENS parameters on the minimal required depth
of milling AD min



• The predicted Ra values are very close to the
experimental values.

• The layer thickness has a significant influence on the
minimum axial milling depth required to achieve the
desired surface roughness.

• The developed thickness measurement software has a
high layer-thickness measuring accuracy.

• Comparisons between the measured thicknesses of
one deposited layer and those obtained experimen-
tally show good agreement.
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