YU ISSN 0372-8633

ŽELEZARSKI ZBORNIK

VSEBINA

	and the second
Paulin Andrej — FNT Ljubljana MEHANIZEM ZGOREVANJA KOKSA	105
Vodopivec Franc, Kmetič M. – Metalur- ški inštitut Ljubljana Grešovnik F. – Železarna Ravne Marinšek Filip, Kürner Oskar – Železarna Jesenice	
O TEKSTURI VALJANJA, RAZOGLJIČENJA IN REKRISTALIZACIJE V JEKLU Z 0.03 % C 1,8 % Si IN 0,3 % AI	113
Uranc Franc – Železarna Ravne VPLIV TRENJA, POTI, DRSNE HITROSTI IN PRITISKA NA OBRABO	119
Risteski B. Ice — Železarna Smederevo O PERIODIČNOSTI KRISTALIZACIJE KOVIN	127
Čurčija Dušan – Metalurška fakulteta Sisak VPLIV HITROSTI VALJANJA NA PROCES	131

LETO 21 ŠT. 3 — 1987

ŽEZB BQ 21 (3) 105-136 (1987)

IZDAJAJO ŽELEZARNE JESENICE, RAVNE, ŠTORE IN METALURŠKI INŠTITUT

i en colo v

1229280

ŽELEZARSKI ZBORNIK IZDAJAJO ŽELEZARNE JESENICE, RAVNE, ŠTORE IN METALURŠKI INŠTITUT

LETO 21

LJUBLJANA

SEPTEMBER 1987

Saita		
Selice	Page	Страниц
A. Paulin Mechanismus der Koksver- brennung 105 UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43	A. Paulin Mechanism of coke combu- stion 105 UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43	A. Paulin Механизм сгорания кокса. 00 UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43
F. Vodopivec, F. Grešov- nik, F. Marinšek, M. Kme- tič O. Kürmer	F. Vodopivec, F. Grešov- nik, F. Marinšek, M. Kme- tič, O. Kürner	F. Vodopivec, F. Grešov- nik, F. Marinšek, M. Kme- tič O. Kürner
Über das Walzgefüge, Ent- kohlung und Rekristallisati- on im Stahl mit 0,03 % C, 1,8 % Si und 0,3 % A1 113 UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53	On texture of rolling, decar- burisation, and recrystalli- zation in steel with 0,03 C, 1.8 Si, and 0,3 A1 113 UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a,AY, 4-53	О текстуре прокатки, обе- зуглероживания и рекри- сталлизации в сталях 0,03 % С, 1,8 % Si и 0,3 % Al 11 UDK: 621.771.62-415: 669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53
F. Uranc	F. Uranc	F. Uranc
Einfluss der Reibung, der Wege, der Gleitgeschwindig- keit und des Druckes auf den Verschleiss 119 UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67	Influence of friction, sliding path, sliding speed, and pressure on the wear 119 UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67	Влияние трения, пути бы- строты скольжения и дав- ления на изиос. 11 UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67
J. B. Risteski Über die Regelmässigkeiten bei der Kristallisation von Metallen 127 UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12	J. B. Risteski On the periodicity of cry- stallization of metals 127 UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12	J. B. Risteski О периодичности кри- сталлизации металлов. 12 UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12
D. Čurčija Einfluss der Walzgeschwin- digkeit auf den Prozess des Kaltwalzens mit Schmier- mitteln 131 UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2	D. Čurčija Influence of the rolling spe- ed on the cold rolling pro- cess with lubricants 131 UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2	D. Čurčija Влияние быстроты про- катки на процесс прокат- ки с смазочным материа- лом. 13 UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2
	A. Paulin Mechanismus der Koksver- brennung UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43 F. Vodopivec, F. Grešov- nik, F. Marinšek, M. Kme- tič, O. Kūrner Über das Walzgefüge, Ent- kohlung und Rekristallisati- on im Stahl mit 0,03 % C, 1,8 % Si und 0,3 % Al 113 UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53 F. Uranc Einfluss der Reibung, der Wege, der Gleitgeschwindig- keit und des Druckes auf den Verschleiss 119 UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67 J. B. Risteski Über die Regelmässigkeiten bei der Kristallisation von Metallen 127 UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12 D. Curčija Einfluss der Walzgeschwin- digkeit auf den Prozess des Kaltwalzens mit Schmier- mitteln 131 UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2	A. Paulin Mechanismus der Koksver- brennung UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43 F. Vodopivec, F. Grešov- nik, F. Marinšek, M. Kme- tič, O. Kūrner Über das Walzgefüge, Ent- kohlung und Rekristallisati- on im Stahl mit 0,03 % C. 1.8 % Si und 0,3 % A1 UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53 F. Uranc Einfluss der Reibung, der Wege, der Gleitgeschwindig- keit und des Druckes auf den Verscheiss UDK: 620.178.162 ASM/SLA: D9q, Q9p, 3-74, 3-67 J. B. Risteski Über die Regelmässigkeiten bei der Kristallisation von Metallen D. Curčija Einfluss der Walzgeschwinet faltwalzens mit Schmier- mitteln 131 UDK: 621.771.621.89 ASM/SLA: F23, 3-67, 132 D. Curčija Einfluss der Walzgeschwinet faltwalzens mit Schmier- mitteln 131 UDK: 621.771.621.89 ASM/SLA: F23, 3-67, 133 134 135 134 135 134 135 135 134 135 137 134 135 135 134 135 135 136 137 137 137 136 137 137 137 137 137 137 137 137

IZDAJAJO ZELEZARNE JESENICE, RAVNE, STORE IN METALORSKI INSTI

LETO 21

LJUBLJANA

SEPTEMBER 1987

Mehanizem zgorevanja koksa

Andrej Paulin

UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43

Analizirali smo mehanizem zgorevanja koksa v temperaturnem območju 1000 do 2300 K ter izdelali primerjavo rezultatov reaktivnosti, dobljenih po Koppersovi in termogravimetrični metodi.

UVOD

Pri kemičnih reakcijah, kjer reagirajo porozni delci, imamo tri možne mehanizme, ki kontrolirajo hitrost procesa, ter vse kombinacije med njimi. Sem spada tudi zgorevanje koksa v plavžu, reakcije vplinjanja s CO₂, kot npr. pri meritvah reaktivnosti, ipd. Ti trije mehanizmi so:

1. hitrost reakcije določa kemična kinetika,

 hitrost reakcije določa notranja difuzija plinskih reaktantov ali reakcijskih produktov v porah delcev,

 hitrost reakcije določa prestop snovi iz plinskega toka do površine delca.

Pri dovolj veliki hitrosti plinskega toka mimo delca, npr. v nasuti plasti, je prestop mase velik, kar pomeni, da je upornost prehodu snovi zaradi zunanje difuzije skozi mejno difuzijsko plast majhna. V takem primeru lahko proces krmilita le kemična kinetika ali notranja difuzija samostojno ali v medsebojni kombinaciji. Pri nizkih temperaturah proces oksidacije (s kisikom) ali uplinjanja (s CO2) koksa krmili kemična kinetika po celotni prostornini poroznih kosov (1). Z naraščanjem temperature začne prevladovati vpliv difuzije v porah in zaradi koncentracijskega gradienta v notranjosti delcev se zmanjšuje hitrost kemične reakcije. Pri koksu, velikosti nekaj centimetrov, nastopi ta prehod pri okoli 1100°C (1). Pri nadaljnjem naraščanju temperature pa postaja hitrost kemične reakcije tako hitra, da bodo plinski reaktanti reagirali, še preden bodo lahko prodrli v notranjost delcev in reakcija bo potekala le na zunanji površini delcev (2).

ANALIZA MEHANIZMA PROCESA PRI MERITVAH REAKTIVNOSTI

Koks v nasuti plasti v toku CO2 reagira po reakciji

$$C + CO_2 = 2 CO$$

Stehiometrično reagira 12 g ogljika s 44 g CO₂, pri čemer nastaja 56 g CO. Obenem nastaneta iz enega mola CO₂, ki reagira, dva mola CO, torej se pri reakciji poveča prostornina plinske faze. Spremembo mase CO₂, ki reagira, lahko zapišemo:

$$\Delta m_{CO_2} = \Delta V_{CO_2} \cdot \rho_{CO_2} \qquad (1)$$

pri čemer lahko spremembo prostornine CO₂ izrazimo s spremembo mase ogljika, ki jo pa pri meritvah reaktivnosti merimo s termotehtnico (3):

$$\Delta V_{CO_2} = (\Delta m_C / M_c) \cdot (M_{CO_2} / \rho_{CO_2}) =$$

$$= (\Delta m_{CO_3} / M_C) \cdot V_M, \qquad (2)$$

kjer M predstavlja molsko maso in V_M molsko prostornino (22,4-10⁻³ m³/mol). Prostornina CO, ki nastane iz CO₂, je:

$$\Delta V_{co} = 2 \cdot \Delta V_{co}, \qquad (3)$$

Parcialni tlak CO₂ v nastali plinski mešanici lahko izrazimo:

$$p_{CO_2} = V_{CO_2} / (V_{CO_2} + V_{CO}) =$$

= $(V_{CO_2}^\circ - V_{CO_2}) / (V_{CO_2}^\circ + V_{CO_2})$ (4)

$$\Delta V_{CO_2} = V_{CO_2}^{\circ} \cdot (1 - p_{CO_2}) / (1 + p_{CO_2}), \qquad (5)$$

kjer $V_{CO_2}^{\circ}$ predstavlja količino vpihanega CO₂, ki jo dobimo, če' tok CO₂ množimo s časom. Če zapišemo $Y = p_{CO_2}/p_{CO}$, bo enačba (5) dobila obliko:

$$\Delta V_{CO_2} = V_{CO_2}^{\circ} \cdot 1/(1+2Y)$$
 (5a)

Za reakcijo ogljika s CO₂ kot reakcijo prvega reda velja:

$$dnc/dt = (k_R \cdot A/M_C) \cdot p_{CO_2} = \frac{k_R \cdot A}{M_C} \cdot \frac{Y}{1+Y}$$
(6)

kjer n predstavlja število molov in A reakcijsko površino, za katero privzamemo, da se pri manjših stopnjah pretvorbe ne spreminja. Ker je:

$$dn_c/dt = dn_{co}/dt,$$
 (7)

velja:

in:

$$dn_{c}/dt = \frac{V_{CO_{2}}^{\circ} \cdot p_{CO_{2}}}{M_{CO_{2}} \cdot t} \cdot \frac{1}{1 + 2Y}$$
(8)

$$k_{R} = \frac{V_{CO_{2}}^{\circ}}{t} \cdot \frac{P_{CO_{2}}}{A} \cdot \frac{M_{c}}{M_{CO_{2}}} \cdot \frac{1+Y}{Y(1+2Y)}$$
(9)

105

Privzeli smo, da se je v sistemu takoj vzpostavilo ravnotežje in da je sestava plina konstantna, kar je glede na nizko temperaturo vplinjanja zaradi majhne hitrosti reakcije upravičeno. Ob popolni izrabi CO₂ je $p_{CO_2} = O$, Y = O in dn_C/dt v enačbi (8) je

$$dn_C dt = \frac{V_{CO_2}^{\circ}}{t} \cdot \frac{\rho_{CO_2}}{M_{CO_2}} = \frac{\Delta n_C}{\Delta t_{maks}} = \frac{R_{maks}}{M_C}$$
(10)

Za plinski tok $V_{CO2}^{o}/t = 100 \ I \ CO_2/h$ je torej največja možna hitrost reagiranja ogljika $4,5 \cdot 10^{-3} \ mol/h$ oz. 54 g/h, za tok 200 I CO_2/h pa sta vrednosti $9 \cdot 10^{-3} \ mol$ C/h oz. 108 g C/h.

Če nam je hitrost zgorevanja koksa v atmosferi CO_2 v kg/h merilo za reaktivnost, R_x , v odvisnosti od toka CO_2 , lahko zapišemo:

$$\mathbf{R}_{x} = \frac{\Delta \mathbf{n}_{C}}{\Delta t} \mathbf{x} = \left[\left(\frac{\Delta \mathbf{n}_{C}}{\Delta t} \right)_{maks} \cdot \frac{1}{1 + 2\mathbf{Y}} \right], \quad (11)$$

kjer je x pretok CO2 v l/h.

Na osnovi definicij za R, in R_{mak}, lahko izrazimo k_R:

$$k_{R} = \frac{R_{s}}{A} \cdot \left(\frac{R_{maks} + R}{R_{maks} - R}\right)_{s}$$
(12)

Če kemična kinetika krmili proces, k_R ni odvisen od toka CO₂, torej mora biti k_{R, x=100} = k_{R, x=200}. Na osnovi meritev reaktivnosti 30 koksovih vzorcev (3) smo izračunali k_{R, 100} in k_{R, 200} in rezultate daje razpredelnica l. Vendar je treba pri tem poudariti, da smo zaradi nepoznavanja dejanske reakcijske površine le-to skoncentrirali na zunanjo površino koksovih delcev, ki smo jo izračunali iz mase vzorca, ocenjene gostote koksa ter iz srednje velikosti koksovih delcev (3,5 cm) (3). Gostoto koksa smo na osnovi literaturnih podatkov (1, 4) vzeli 1000 kg/m³:

$$A = \frac{m \cdot S_V}{\rho_K} = 0,0514 \text{ m}^2,$$
 (13)

kjer je m masa vzorca (0,3 kg), Sv zunanja specifična površina koksovih delcev v vzorcu (171,43 m²/m³), ρ_k gostota koksa (1000 kg/m³). Razmerje k_{R.200}/k_{R.100} v razpredelnici 1 kaže, da večina preskušanih koksovih vzorcev ustreza pogoju enačbe (12) v mejah natančnosti ±25%. Odstopanja utegnejo biti posledica nehomogenosti nekaterih koksovih vzorcev, pri katerih je bila že s prostim očesom vidna dvofazna zgradba, vendar pri meritvah reaktivnosti tega pojava nismo beležili in torej neposredno tega ne moremo dokazati. Na osnovi rezultatov v razpredelnici 1 lahko torej sklepamo, da na reakcijo koksa s CO₂ pri meritvah reaktivnosti vpliva kemična kinetika.

MEHANIZEM REAGIRANJA POROZNIH KOKSOVIH DELCEV

Na osnovi literaturnih podatkov (4), da se gostote koksov brez por gibljejo med 1720 in 2120 kg/m³ (gostota grafita je 2260 kg/m³), gostote poroznih koksov pa med 700 in 1230 kg/m³, lahko privzamemo za povprečno gostoto koksa 1000 kg/m³ ter da je prostornina por pri koksih $3,4\cdot10^{-4}$ do $8,5\cdot10^{-4}$ m³/kg. V nadaljnjih računih bomo vzeli kot povprečno vrednost $5,5\cdot10^{-4}$ m³/kg. Za porozne katalizatorje velja, da je srednja velikost por odvisna od prostornine por ter specifične površine katalizatorja (5): reakcijska konstanta je bila izračunana na osnovi zmanjšanja mase vzorca po 50 minutah poskusa

$$r_{sr} = \frac{2 \cdot V_p}{S_p},$$
 (14)

kjer je V_p prostornina por in S_p specifična površina poroznega koksa. Loison (1) daje podatek, da je glavnina kanalov pri polkoksih med $2 \cdot 10^{-4}$ in $5 \cdot 10^{-4}$ m. Ker je pri koksih stopnja sintranja nekoliko večja kot pri polkoksih, lahko vzamemo, da je srednja velikost por okoli 10^{-4} m. Iz enačbe (14) sledi, da je potem S_p = 11 m²/kg oz. 11 · 10³ m²/m³.

Verjetno je, da je pri temperaturi meritev reaktivnosti (1223 K) kemična kinetika tako počasna, da CO_2 lahko difundira globoko v notranjost koksa in reakcija poteka po vsej prostornini koksa ob enakomerni koncentraciji CO_2 , ki je enaka koncentraciji CO_2 v plinskem toku. Petersen (6) je v svojem modelu uplinjanja trdnih goriv predpostavil, da so pore okrogle in enakomerne ter se med reakcijo njihov premer povečuje, kar pomeni, da je specifična površina vzorca dejansko reakcijska površina. Če je koncentracija plina v porah enakomerna, je reakcijska hitrost na enoto prostornine porozne trdne faze pri reakciji prvega reda:

$$\frac{\mathrm{d}\mathbf{n}_{\mathrm{V}}}{\mathrm{d}t} = \mathbf{n}'\mathbf{v} = \mathbf{k} \cdot \frac{\varepsilon_{\mathrm{o}}}{\mathbf{r}_{\mathrm{sr}}} \cdot \frac{(2\mathbf{G} - 3\boldsymbol{\xi})\boldsymbol{\xi}}{\mathbf{G} - 1} \cdot \mathbf{c}, \tag{15}$$

kjer je k reakcijska konstanta v m/h, ε_o začetna poroznost trdne faze, r_o začetni (srednji) polmer por, $\xi = r_{sr}/r$, r polmer por po času t reakcije, c koncentracija plinskega reaktanta v mol/m³, G pa je koren enačbe:

Razpredelnica 1: Reakcijske konstante, izračunane iz meritev reaktivnosti pri pretoku 100 in 2001 CO₂/h v 10^{-3} kg/h (k'_R = k_R·A)

Vzorec	k ['] _{R. 100}	$k_{R,200}^{'}$	$\frac{\mathbf{k}_{R,100}'}{\mathbf{k}_{R,200}'}$
K-1	16,6	16,6	1,0
K-2*	9,9	11,9	0,83
K-3	14,5	18,2	0,8
K-4	7,5	8,0	0,94
K-5	23,8	21,6	1,10
K-6 ^x	12,9	14,4	0,89
K-7	12,6	13,5	0,93
K-8	26,6	27.1	0,97
K-9	9.1	15.0	0,61
K-10	12.6	23,4	0,54
K-11	18.8	27.1	0,69
K-12	29.5	25.2	1,17
K-13	52	56	0.93
K-14 ^x	28,6	28.0	1.02
K-15	6.0	8.0	0,75
K-16	6.0	6.7	0.89
K-17 ^x	10.9	18,0	0,61
K-18	7.5	15,0	0.5
K-19	12.6	18,2	0,69
K-20	14,5	16,6	0,87
K-21	12.6	16.6	0.76
K-22	7.5	15.0	0.5
K-23	12.6	16.6	0,76
K-24	12.6	16.6	0.76
K-26	16.6	18,2	0,91
K-27	10.8	12,0	0.9
K-28	18.8	25.2	0,75
K-29	26.6	31.2	0,85
K-30	21.2	33.3	0.64

$$\frac{4}{27} \cdot \varepsilon_0 \cdot \mathbf{G}^3 - \mathbf{G} + \mathbf{I} = 0 \tag{16}$$

ξ je tudi:

kjer je:

$$t_c = \frac{r_{sr} \cdot \rho_k}{k \cdot c \cdot M_c}$$
(18)

Če vzamemo npr. $R_{100} = 6 \cdot 10^{-3}$ (vzorec K-4) oz. 16,8 · 10⁻³ kg/h (vzorec K-14) (k_R = 0,146 oziroma 0,556 kg/m² · h), lahko izračunamo n'v:

 $\xi = 1 + \frac{1}{t}$,

$$\mathbf{n'v} = \mathbf{k}_{\mathsf{R}} \cdot \frac{\mathbf{S}_{\mathsf{V}}}{\mathsf{M}_{\mathsf{C}}},\tag{19}$$

ki je 2086 oz. 7178 mol/h·m³ koksa. Iz vzete povprečne prostornine por v koksu sledi, da je $\varepsilon_0 = 0.55$. Če vstavimo to vrednost v enačbo (16), dobimo za G korene -3.92, 2,81 in 1,11. Ker mora biti $\xi > 1$ (po definiciji), bo n'v po enačbi (15) pozitiven, če je 2/3 G>1 ali <0. Torej imata smisel le korena G = 2,81 oz. G = -3.92. Szekely za stopnjo pretvorbe X navaja izraz (6):

$$X = \frac{\varepsilon_{o}}{1 - \varepsilon_{o}} \left[\frac{(1 + t/t_{o})^{2}(G - 1 - t/t_{o})}{G - 1} - 1 \right]$$
(20)

Iz znane stopnje pretvorbe v našem primeru:

$$X = R_x \cdot \frac{t}{m}$$
(21)

pa lahko izračunamo t_c . Enačba je rešljiva le za G = 2,81.

Za $R_{100} = 6 \cdot 10^{-3}$ kg/h daje rešitev enačbe (20) pozitivni vrednosti za t/t_c: 0,011 in 1,52, za $R_{100} = 16.8 \cdot 10^{-3}$ kg/h pa 0,032 in 1,50. Le vrednosti 0,011 in 0,032 sta smiselni.

Za izračun reakcijske konstante iz enačbe (15) potrebujemo koncentracijo c_{CO_2} , ki jo iz meritev reaktivnosti izrazimo:

$$\mathbf{c}_{\mathrm{CO}_{2}} = \mathbf{p}_{\mathrm{CO}_{2}} \cdot \frac{\mathbf{p}_{\mathrm{CO}_{2}}}{\mathbf{M}_{\mathrm{CO}_{2}}} = \left(\frac{\mathbf{R}_{\mathrm{maks}} - \mathbf{R}}{\mathbf{R}_{\mathrm{maks}} + \mathbf{R}}\right)_{x} \cdot \frac{\mathbf{p}_{\mathrm{CO}_{2}}}{\mathbf{M}_{\mathrm{CO}_{2}}}$$
(22)

Za $R_{100} = 6 \cdot 10^{-3}$ kg/h oz. $16.8 \cdot 10^{-3}$ kg/h je c_{CO} , = 35,7 oz. 23,5 mol/m³ in iz enačbe (15) k = 0,0074 oz. 0,0274 m/h. Po enačbi (18) nato izračunamo t_c in dobimo 23,32 oz. 10,24 h, kar daje ξ = 1,04 oz. 1,10 za čas t = 1 h.

Če razvijemo plašč por ter ga smatramo kot ravno površino in iz ξ izračunamo hitrost odgorevanja kot ravno površino in iz ε izračunamo hitrost odgorevanja tako dobljene specifične površine, reagira v 300 g vzorcu naslednja količina ogljika:

$$\mathbf{m}_{\mathrm{C}} = \mathbf{r}_{\mathrm{sr}} \cdot (\xi - 1) \cdot \mathbf{S}_{\mathrm{p}} \cdot \mathbf{k} \cdot \mathbf{V}_{\mathrm{vz}}, \tag{23}$$

kjer je V_{vz} prostornina v vzorcu za merjenje reaktivnosti. V odvisnosti od ξ dobimo naslednje vrednosti:

 5	$m_C(kg/h)$	
1,011	0,003	
1,032	0,0085	
1,04	0,0086	
1,10	0,0216	

Prvi dve vrednosti smo izračunali za $R_{100} = 6 \cdot 10^{-3} \text{ kg/h}$ na osnovi ξ iz enačb (21) in (18) in vidimo, da vrednost za R pade med vrednosti za m_c . Enako vrednost za $R = 16.8 \cdot 10^{-3} \text{ kg/h}$ pade med vrednosti 0,0086 in 0,0216 kg/h, kar potrjuje tako ustrezne ocene glede velikosti por, poroznosti koksa ter njegove

specifične površine, kakor tudi potrjuje mehanizem, da pri meritvah reaktivnosti koksa reagira le-ta po celotni prostornini delcev in plasti, ker je hitrost kemične kinetike bistveno manjša tako od notranje kot zunanje difuzije.

VPLIV TEMPERATURE NA MEHANIZEM REAGIRANJA POROZNIH KOKSOVIH DELCEV

S povečevanjem temperature raste hitrost kemične reakcije v skladu z Arrheniusovo enačbo:

$$k_{\rm T} = k_{\rm O} \cdot \exp \frac{-E}{RT}$$
(24)

Meritve karboksireaktivnosti in oksireaktivnosti so bile narejene pri 950°C in za to temperaturo veljajo izračunane reakcijske konstante ter model reagiranja. V plavžu pa se temperature spreminjajo. Pred pihalicami dosežejo celo 1500°do 2000°C.

Iz različne strukturne zgradbe grafita v trdnih gorivih izhaja izredno širok spekter vrednosti za aktivacijsko energijo, ki jih navaja literatura za reakcijo C + CO_2 , saj se te gibljejo od 138 do 310 kJ/mol CO₂. Lesno oglje, polkoksi in koksi iz rjavih premogov imajo izrazito fino strukturo in nižjo stopnjo grafitiracije, kot npr. koksi in petrolejski koks (7).

Ker smo reaktivnosti ugotavljali samo pri 950°C, smo morali aktivacijsko energijo oceniti iz literaturnih podatkov. Esin (8) navaja za koks aktivacijsko energijo 195 kJ/mol, če je $p_{CO_2} < 0.13$, oz. 216 kJ/mol, če je $p_{CO_2} > 0.13$. Prvi primer se bolj približuje pogojem v plavžu, zato bomo v nadaljnjih računih vzeli vrednost 195 kJ/mol za vse vrste koksov, kar je tudi približek.

Ker hitrost kemične kinetike narašča s temperaturo hitreje kot hitrost difuzije, nastopi pri neki temperaturi meja, nad katero z difuzijo ne pride več dovolj plinskega reaktanta po vsej prostornini poroznega koksa, da bi zadovoljil porabi zaradi kemične kinetike. V koksovih delcih nastopi tedaj koncentracijski gradient CO2. Povprečna koncentracija CO2 se začne zmanjševati in s tem vpliva na povprečno hitrost kemične reakcije. Nastopi vpliv notranje difuzije. Pri nadaljnjem povečevanju temperature je koncentracijski gradient vse večji, dokler ne nastopi druga meja, ko je hitrost kemične reakcije tako velika, da plinski reaktant ne prodre več globoko v notranjost, ne da bi preje reagiral. Tedaj se reagiranje koksa s CO2 skrči na tanko lupino ob zunanji površini delcev. Za ta primer navaja Petersen (6), da je hitrost reakcije prvega reda na enoto zunanje površine:

$$\frac{\mathrm{d}n_{\mathrm{A}}}{\mathrm{d}t} = n'_{\mathrm{A}} = (\mathbf{k} \cdot \mathbf{S}_{\mathrm{V}} \cdot \mathbf{D}_{\mathrm{E}})^{v_{\mathrm{i}}} \cdot \mathbf{c}_{\mathrm{CO}_{2}} \tag{25}$$

Model je uporabljiv, ko postane debelina lupine, v kateri poteka reakcija, mnogo manjša od polmera delcev. Pri tem mora biti izpolnjen pogoj:

$$\frac{\sqrt{d}}{\mathrm{Ad}} \cdot \left(\frac{\mathbf{k} \cdot \mathrm{Sv}}{\mathrm{De}}\right)^{\frac{1}{2}} > 3, \tag{26}$$

kjer sta V_d in A_d prostornina in površina delca. Koncentracijski gradient v koksu pa izračunamo iz:

$$\frac{\mathrm{d}c_{\mathrm{CO}_2}}{\mathrm{d}h} = -\left(\frac{\mathbf{k}\cdot\mathbf{S}\mathbf{v}\cdot\mathbf{c}_{\mathrm{CO}_2}^2}{\mathrm{D}\mathbf{e}}\right)^{\frac{1}{2}},$$
(27)

če je h globina.

Iz enačbe (24) izračunamo na osnovi meritev karboksireaktivnosti in privzete aktivacijske energije parameter k_o:

Mehanizem zgorevanja koksa

(17)

(28)

$$\frac{k_{1223}}{\exp\left(-E/RT\right)}$$

ki je za $R_{100} = 6 \cdot 10^{-3} \text{ kg/h} \quad 1,67 \cdot 10^6$, za $R_{100} = 16.8 \cdot 10^{-3} \text{ kg/h} \text{ pa } 8,88 \cdot 10^6$. Vidimo, da je k_o funkcija reaktivnosti.

Iz enačb (15), (19), (12), (22) in (13) sledi, da je:

$$k_{1223} = \frac{\mathbf{r}_{st}}{\varepsilon_o} \cdot \frac{\mathbf{M}_{CO_2}}{\mathbf{M}_C} \cdot \frac{\mathbf{p}_k}{\mathbf{m}} \cdot \frac{\mathbf{G} - 1}{(2\mathbf{G} - 3\xi)\xi} \left[\mathbf{R}_x \frac{\mathbf{R}_{maks + R}}{\mathbf{R}_{maks - R}} \right]_x \quad (29)$$

Ceprav je ξ tudi funkcija reaktivnosti, smo račun poenostavili in za ξ vzeli srednjo vrednost med malo in mnogo reaktivnimi koksi ($\xi = 1,04$). Z vstavitvijo številčnih vrednosti postane enačba (29):

$$k_{1223} = 1,227 R_x \left(\frac{R_{maks} + R}{R_{maks} - R} \right)_x$$
 (29a)

Odvisnost k_{1223} od R_x za x = 100 in 200 l CO₂/h kaže slika 1, medtem ko slika 2 kaže odvisnost k_o od R_x .

Slika 1

Razmerje med reakcijsko konstanto za porozni koks pri 1223 K in termogravimetrično merjeno reaktivnostjo za tok CO₂ (x) 100 in 2001 CO₂/h

Fig. 1

Relationship between the reaction-rate constant for porous coke at 1223 K and the thermogravimetrically measured reactivity for CO₂ flows (x) 100 and 200 l/h.

Spreminjanje konstante k_o v Arrheniusovi enačbi s termogravimetrično merjeno reaktivnostjo za tok CO₂ (x) 100 in 2001 CO₂/h

Variation of constant k_o in the Arrhenius equation with the thermogravimetrically measured reactivity for CO₂ flows (x) 100 and 200 l/h. Iz enačb (24) in (29a) lahko nadalje izračunamo odvisnost reakcijske konstante, k, od temperature in reaktivnosti:

$$k_{T} = 1,227 R_{x} \left(\frac{R_{maks} + R}{R_{maks} - R} \right)_{x} \cdot exp \left(-\frac{E}{RT} + \frac{E}{1223 R} \right)$$
(30)
Odvisnost k_{T} od temperature za $R_{100} = 6 \cdot 10^{-3}$ oz.
 $16.8 \cdot 10^{-3} \text{ kg/h}$ kaže slika 3.

Slika 3

Spreminjanje reakcijske konstante s temperaturo za malo reaktivni (r_k = 70) in močno reaktivni (r_k = 150) koks

Fig. 3

Variation of the reaction-rate constant with the temperature for a low ($r_k = 70$) and a high reactive ($r_k = 150$) coke.

Toda ugotovili smo že, da se z naraščanjem temperature spremeni mehanizem reakcije. Iz enačbe (26) lahko izračunamo, pri kakšni reakcijski konstanti postane reakcija topokemična, t. j. da koks reagira samo v tanki zunanji lupini. Če sta

100

$$A_d = 4 \cdot \pi \cdot (r \cdot F)^2 = 24.63 \cdot 10^{-4} m^2$$

in

$$V_d = 4 \cdot \pi \cdot (r \cdot F)^3 / 3 = 91,95 \cdot 10^{-6} m^2$$

kjer je F oblikovni faktor koksa (= 0.8) in r = 0.035 m ter je efektivni difuzijski koeficient CO₂ skozi porozen koks:

$$D_{e} = D_{AB} \left(\frac{T}{273} \right)^{\frac{3}{2}} \cdot \frac{\varepsilon}{\tau}, \qquad (31)$$

kjer je τ faktor zavitosti por, ki se giblje med 2 in 10 in ga brez poskusov ni možno zanesljivo napovedati (9), in D_{AB} difuzijski koeficient CO₂ v plinski mešanici CO₂ + CO pri 273 K, ki je 0,064 m²/h (10), mora biti

$$(\mathbf{k} \cdot \mathbf{De})^{\frac{1}{2}} > 3 \cdot \frac{\mathbf{A}_d}{\mathbf{V}_d \cdot \mathbf{S}_V^{1/2}} = 39,28$$
 (32)

Faktor zavitosti por za koks smo zaradi pomanjkanja eksperimentalnih podatkov vzeli 6 in odvisnost D_e od temperature daje slika 4. Pogoj v enačbi (32) je izpolnjen pri malo reaktivnih koksih pri okoli 2373 K, pri močno reaktivnih pa že pri okoli 2023 K.

Zaradi primerjave mehanizma pri nizkih temperaturah, ko koks reagira po vsej prostornini, z mehanizmom pri visokih temperaturah, ko je reakcija topokemična, smo hitrost reakcije na enoto prostornine (enačba 19) pri nizkih temperaturah pretvorili na navidezno hitrost na enoto zunanje površine:

Fig. 4

Slika 5

Reakcijska hitrost za reakcijo C + CO₂ za mehanizem, ko poteka reakcija enakomerno po vsej prostornini (po enačbi 33), in za mehanizem, ko poteka samo po zunanji površini (po enačbi 25), obakrat ektrapolirana proti vmesnemu mešanemu področju. K-4 predstavlja malo, K-14 pa močno reaktiven koks

Fig. 5

C+CO₂ reaction rate for the mechanism when the reaction takes place uniformly through the whole volume (eq. 33), and for the mechanism when the reaction takes place on the external surface (eq. 25), in both cases extrapolated towards the intermediate region. Sample K-4 represents a low-reactivity coke, sample K-14 a high-reactivity one. $\frac{dn_v}{dt} = S_v \cdot \left(\frac{dn_A}{dt}\right)_{nav}$ (33)

Odvisnost dn_A/dt od temperature kaže slika 5 za $R_{100} = 6 \cdot 10^{-3}$ in $16.8 \cdot 10^{-3}$ kg/h.

Pri temperaturah nad 2000 K smo dn_A/dt izračunali iz enačbe (25) in tudi vrisali na sliko 5. Vidimo, da so hitrosti bistveno manjše, kar je posledica manjše reakcijske površine ter manjših parcialnih tlakov CO₂. Zaradi intenzivnosti kemične reakcije je poraba CO₂ iz plinskega toka namreč tako hitra, da se vzpostavi ravnotežje pri zelo majhnih parcialnih tlakih CO₂. Spreminjanje parcialnih tlakov CO₂ s temperaturo, izračunanih po enačbah (22), (12) in (24), kaže slika 6.

Slika 6

Spreminjanje vzpostavljanega ravnotežnega parcialnega tlaka CO₂ v sistemu v odvisnosti od temperature

Fig. 6 Variation of the established equilibrium CO₂ partial pressure in the system with the temperature.

Slika 7

Spreminjanje navidezne reakcijske konstante na enoto zunanje površine za malo (K-4) in močno reaktiven (K-14) koks v odvisnosti od temperature za oba čista mehanizma kemičnega krmiljenja

Fig. 7

Variation of the apparent reaction-rate constant per unit external surface for a low (K-4) and a high reactive (K-14) coke with the temperature for both boundary controlling mechanisms.

Mehanizem zgorevanja koksa

Slika 7 pretvorjena v koordinatni sistem ln k_R-1/T, ki omogoča izračun aktivacijske energije

Fig. 8

Fig. 7 in the 1n k_R -1/T coordinates which enables to evaluate the activation energies (E_a).

Vendar pomembnejše kot absolutne hitrosti reagiranja koksa je spreminjanje reakcijske konstante v odvisnosti od temperature. Podobno kot pri hitrostih reakcije smo zaradi možne primerjave različnih mehanizmov reakcijsko površino skoncentrirali na zunanjo površino delcev ter reakcijsko konstanto v kg C/h·m² zunanje površine izrazili:

$$k_{\rm R} = \frac{n'_{\rm A} \cdot M_{\rm C}}{p_{\rm CO}}$$
(34)

Odvisnost k_R od temperature kaže **slika 7**. Po pričakovanju ekstrapolacija konstante za mehanizem, ki velja pri nizkih temperaturah, k visokim temperaturam daje prevelike vrednosti. Če reakcijsko konstanto s slike 7 rišemo v koordinatah ln $k_R - 1/T$, dobimo **sliko 8** in iz naklonov premic smo izračunali aktivacijske energije, E_s . Iz slike sledi, da je pri visokih temperaturah navidezna aktivacijska energija 0,54 dejanske aktivacijske energije (195 kJ/mol), kar je v skladu z mehanizmom reakcije (6). Za vzorec K-4 je predložena reakcijska konstanta:

T>1373 K
T<1373 K,
T>1223 K

 $\ln k_{R} = 18,60 - 23530/T$ T < 1223 K.

PRIMERJAVA REZULTATOV REAKTIVNOSTI, MERJENIH TERMOGRAVIMETRIČNO IN PO KOPPERSU

Glede na to, da je možno uporabljati tri načine ugotavljanja reaktivnosti koksa: standardno Koppersovo metodo ter merjenje manjšanja mase v toku 100 oz. 2001 CO₂/h s termotehtnico, smo že skonstruirali primerjalni diagram na osnovi grobih ocen dogajanj v merilnih napravah (3). Sedanja analiza mehanizmov zgorevanja koksa pa omogoča natančnejše primerjave.

Ker smo ugotovili, da pri meritvah karboksireaktivnosti poteka reakcija po vsej prostornini vzorca in za hitrost reakcije velja enačba (15), sledi, da mora biti za vse tri metode za vsak vzorec

$$\frac{n'_V}{c_{COS}} = konstanta;$$
 (35)

 c_{CO_2} je premosorazmeren p_{CO_2} in je torej tudi n'_v/ p_{CO_2} konstanta. Hitrost reakcije s CO₂ na enoto prostornine koksa po Koppersovi metodi lahko izračunamo iz enačbe:

$$(n'_{v})_{Kop} = \frac{V_{CO_{1}}^{o}}{t} \cdot \frac{\rho_{CO_{1}}}{M_{CO_{1}}} \cdot \frac{1}{1+2Y} \cdot \frac{t}{V_{K}}$$
 (36)

v mol $CO_2/m^3 \cdot h$. Plinski tok $V_{CO_2}^\circ/t = 9,6 \cdot 10^{-3} m^3/h$, prostornina koksa $V_k = 20,4 \cdot 10^{-6} m^3$ pri vzorcu 34 cm³ ob predpostavki, da je nasipna poroznost 40 %, čas = 10 minut. Enačba (36) je podobna enačbi (8), ki kaže hitrost reakcije v določenem vzorcu. Parcialni tlak CO_2 izračunamo iz definicije za reaktivnost po Koppersu, r_k:

$$\sigma_{\rm CO_2} = 1 - \frac{2 r_k}{r_k - 200} \tag{37}$$

in sledi:

$$\left(\frac{n_{V}^{*}}{p_{CO_{2}}}\right)_{Kop} = \frac{V_{CO_{2}}^{o}}{t} \cdot \frac{\rho_{CO_{2}}}{M_{CO_{2}}} \cdot \frac{t}{V_{K}} \cdot \frac{r_{k} + 200}{200 (200 - r_{K})}$$
(38)

Iz enačb (19), (22) in (12) pa izrazimo še:

r

$$\left(\frac{\mathbf{n}_{V}^{*}}{\mathbf{p}_{CO_{2}}}\right)_{ver} = \frac{\mathbf{S}_{V}}{\mathbf{M}_{C}} \cdot \mathbf{A} \cdot \mathbf{R}_{x} \left(\frac{\mathbf{R}_{maks} + \mathbf{R}}{\mathbf{R}_{maks} - \mathbf{R}}\right)_{x}^{2}$$
(39)

V skladu z enačbo (35) morata biti desni strani enačb (38) in (39) enaki in s tem dobimo odvisnost med r_k in R_s , kjer x predstavlja tok CO₂ pri termogravimetričnih meritvah. Grafična rešitev nam da **sliko 9**. Primerjava te slike z diagramom 7 v lit. (3) kaže primerno ujemanje pri toku CO₂ 100 l/h, nekoliko večje odstopanje pa je pri toku 200 l/h.

Slika 9

Primerjalni diagram med reaktivnostmi po Koppersu in po termogravimetrični metodi v odvisnosti od toka CO₂ (x) v l CO₂/h

Fig. 9

A comparison graph for the reactivity values by Koppers and by the thermogravimetrical method, depending on the CO_2 flow (x) in 1/h.

ZAKLJUČKI

Na osnovi merjenih karboksireaktivnosti s termogravimetrično metodo (3) smo ugotovili, da v temperaturnem območju meritev koks reagira s CO₂ enakomer-

no po vsej prostornini plasti in delcev. Pri temperaturah nad 2000 K pa je vpliv difuzije že tolikšen, da postane reakcija topokemična. V analizah ni bil upoštevan eventualni temperaturni gradient v koksovih delcih.

Izdelan je bil primerjalni diagram reaktivnosti, izmerjenih termogravimetrično in po Koppersu (slika 9).

Temperaturna odvisnost reakcijske konstante v kg C/h in m2 zunanje površine delcev je za koks reaktivnosti (po Koppersu):

1. $r_{\rm b} = 70$	$\ln k_R = 9,125 - 12500/T$	T>1373 K
	$\ln k_{\rm R} = 17,29 - 23530/{\rm T}$	T<1373 K
2. $r_{\rm b} = 150$	$\ln k_8 = 9,78 - 12500/T$	T>1233 K
	$\ln k_{\rm P} = 18.60 - 23530/T$	T<1233 K

Pri višjih temperaturah je navidezna aktivacijska energija 54 % dejanske in tako je tudi navidezni red reakcije 0,54.

- Literatura
- 1. R. Loison, P. Foch, A. Boyer: Le coke. Dunod, Paris 1970, str. 192-5.
- 2. H. Y. Sohn, M. E. Wadsworth: Rate processes of extractive metallurgy. Plenum Press, New York 1979, str. 24.
- 3. A. Paulin, J. Lamut, D. Dretnik: Reaktivnost koksa in njen vpliv na delo plavža. Železarski zbornik, 21, 1987, 2, str. 65-71
- 4. Hütte. Taschenbuch für Eisenhüttenleute, 4. Aufl. Berlin 1930, str. 383.
- J. H. Perry: Chemical Engineers' Handbook, 4th, ed. McGraw Hill, New York 1963, str. 14-20. 6. Lit. 2, str. 25-27.
- 7. B. Dobovišek: Direktna redukcija železovih oksidov in reaktivnost trdnih goriv I. Rudarsko-metalurški zbornik 1971, 1, 87-100.
- 8. O. A. Esin, P. V. Geljd: Fizičeskaja himija pirometallurgičeskyh processov, častj 1, Sverdlovsk 1961, str. 193.
- 9. Lit. 2, str. 5. 10. Lit. 5, str.14-22.

ZUSAMMENFASSUNG

Auf Grund der Reaktionsfähigkeitsmessungen von verschiedenen Kokssorten (3), ist der Mechanismus der Reaktion von Kohlenstoff mit CO2 analisiert worden. Es ist festgestellt worden, dass bei 950°C, das heisst im Temperaturbereich der Messungen, die Reaktion durch die chemische Kinetik ge-steuert wird. Mathematisch kann auch das Verhältnis der chemischen Reaktionskonstante und den durch die thermogravimetrische Methode erhaltenen Reaktionswerte ausgedrückt werden. Weiter ist auch ein Vergleichsdiagramm zwischen der Reaktionsfähigkeit nach Koppers und der thermogravimetrischen Methode (Bild 9) ausgearbeitet worden. Dieser ist im Bezug auf die schon veröffentlichte Vergleichung (3) verfollständigt worden.

Da der Koks porös ist, kann die Reaktion durch die chemische Kinetik auf zwei Arten gesteuert werden. Falls die chemische Kinetik langsam genug ist so, dass die Reaktionsgeschwindigkeit nicht durch die innere Diffusion der Gasreagenzen in den Poren bestimmt wird, dann verläuft die Reaktion gleichmässig im ganzen Koksraum. Es ist festgestellt worden, dass dieser Mechanismuss für die Reaktion von Kohlenstoff mit CO2 bei der Temperatur der Reaktionsfähigkeitsmessung gilt. Nachdem die Geschwindigkeit der chemischen Reaktion so schnell wird, dass die Gasreagenzen reagieren ehe diese in das Innere der Teilchen eindringen können, verläuft die Reaktion nur auf der äusseren Fläche der Teilchen. Ein solcher Mechanismus gilt für Koks bei Temperaturen über 2000°C. Im Zwischenbereich wird der Prozess durch einen gemischten Mechanismus der chemischen Kinetik und innerer Diffusion gesteuert. Die scheinbare Aktivationsenergie beträgt in diesem Bereich 54 % der Werte der Aktivationsenergie für den reinen kinetischen Mechanismus. Die Reaktionsfähigkeit von Koks hat keinen Einfluss auf den Mechanismus der Reaktion durch CO2, beeinflusst nur die Übergangstemperatur von einem zum anderen Mechanismus und zwar bei grösserer Reaktionsfähigkeit sinkt die Übergangstemperatur.

Wegen der einfacheren Anwendbarkeit ist die scheinbare Reaktionskonstante für die Einheit der äusseren Teilchenoberfläche und für zwei verschiedene Kokssorten (mit der Reaktionsfähigkeit nach Koppers rk = 70 und 150) von der Temperaturabhängigkeit ausgerechnet worden.

SUMMARY

Based on the reactivity measurements of various cokes (3) the mechanism of carbon reaction with CO2 was analyzed. It was found that the reaction is controlled by chemical kinetics which is valid for the temperature region of reactivity measurements, i. e. around 950° C. Mathematically the relationship between the reactivity values obtained by thermogravimetrical method and the chemical reaction-rate constant was expressed. Further, the comparison diagram between the reactivity values obtained by the Koppers method and by the thermogravimetrical method was constructed. It is more exact than the previously published one (3) since it was completed with the new findings on the reaction mechanisms.

Since coke is porous the chemical kinetics can control the reaction in a double way. If the kinetics is slow enough that reaction rate is not determined by the internal diffusion of gaseous reactants in the pores, the reaction is uniform throughout the whole volume. Such a mechanism was found

for the reaction of carbon with CO2 at the temperature of the reactivity measurements. When the chemical reaction rate becomes so high that gaseous reactants react before they can penetrate into the interior the reaction takes place on the external surface. Such a mechanism is valid for coke above 2000°C. In the intermediate region the reaction is controlled by a mixed chemical-kinetics and internal-diffusion control. The apparent activation energy for this region was found to be 54 % of the value for the intrinsic activation energy. The coke reactivity does not influence the reaction mechanism. It only shifts the transition temperature, i. e. the higher reactivity the lower transition temperature.

Due to easier applicability the apparent reaction-rate constant per unit external surface was calculated for two various cokes (reactivity by Koppers were $r_k = 70$, and 150) and its variation with the temperature was determined.

ЗАКЛЮЧЕНИЕ

На основании измерения реактивности различных видов кокса проанализирован механизм реакции углерода с СО₂. Определили, что реакцией управляет химическая кинетика, что относиться на температурную облаческим мерений т. е. в нашем случае на 950° С. Математическим путём можно выразить также отношение между химической реакционн ой константой скорости реакции и значениями для реактивность, полученные термогравиметрическим методом. Мы сделали также сравнительную диаграмму между реактивностью по Копперсу и реактивностью по термогравиметрическом способу (рис. 9) который усо вершеноствован, что касается уже объявленного сравнения (3).

Так как кокс пористый может химическая кинетика выполнять управление реакцией двойным способом. Если химическая кинетика довольно медленная и быстроту реакции не определяет внутренная диффузия газовых реактант в порах, то протекает реакция равномерно по всему объёму кокса. Мы определили, что такой механизм имеет место для реакции углерода с CO₂ при температуре

1912

измерения реактивности. Как только быстрота химической реакции увеличиться так быстро, что газовые реактанты вступают в реакцию прежде чем проникнут во внутренность частиц, то реакция протекает только на внешней поверхности частиц. Такой механизм действителен только для кокса при температуре свыше 2000° С. В промежуточной области процессом управляет смешанный механизм химической кинетики и внутренной диффузии.

Кажуейшая активизацийская энергия в этой области представляет 54 % значения активизации для чистый кинетический механизм. Реактивность не влияет на механизм реакции с CO₂, но влияет только на температурный режим при переходе из одного механизма в другой, относительио увеличенная реактивность снижает температуру перехода.

Мы подечитали константу реакции на единицу внешней поверхности частиц, а также для двух различных видов кокса (с реактивностью по Копперсу для 70 и 150) мы высчитали её зависимость от температуры.

O teksturi valjanja, razogljičenja in rekristalizacije v jeklu z 0.03 C, 1.8 Si in 0.3 Al

UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23 M28k, M26c, N5, J4a, AY, 4-53

F. Vodopivec, F. Grešovnik, F. Marinšek, M. Kmetič in O. Kürner

1. CILJ RAZISKAVE

Iz jekel s povečanim silicijem, visokim aluminijem ter nizkim ogljikom, manganom, nečistočami in rezidualnimi elementi se izdelujejo trakovi za elektropločevine. Proces izdelave trakov obsega vroče in hladno valjanje, žarjenje za razogljičenje in za rekristalizacijo ter nanos izolacijske prevleke. Merilo kvalitete trakov so vatne izgube, ki povedo, koliko energije je potrebno za spremembo smeri magneterja pri določeni indukciji. Čim manjša je ta energija, tem boljša je elektropločevina. Jekla za elektropločevine delimo po stopnji testure v dve veliki skupini, v neteksturirane in v teksturirane. Po teži prevladujejo prve, ki se izdelujajo iz jekla z od 0.6 do 2.6 silicija. Te vrste pločevina mora biti izotropna, da so vatne izgube neodvisne od smeri, pod katero se glede na smer valjanja iz nje izrežejo lističi za magnetna jedra. Teksturirane pločevine imajo tako teksturo, da so v ravnini valjanja le kristalna zrna z legama (110) ali (100), kristalna smer (100) pa se ujema s smerjo valjanja traka (1). Te vrste elektropločevine imajo nižje vatne izgube, ki so blizu tistim iz amorfnih kovin (2), vendar je zaradi teksturiranosti oz. anizotropije mogoče iz njih izdelati le magnetna jedra s posebno obliko za transformatorje.

Izhodišče za razvoj teksturirane elektropločevine je dejstvo, da je energija, potrebna za spremembo smeri magnetnega polja, odvisna od kristalne smeri in je največja v smeri (112) (3), najmanjša pa v smeri (100). Zato so z magnetnega stališča neugodna vsa kristalna zrna, pri katerih ploskev, ki te smeri ne vsebuje, leži v ravnini pločevine, torej vse ploskve iz družine (111).

Lastnosti elektropločevin so, razen od lege zrn v ravnini traka, odvisne še od električne upornosti ter od oblike in velikosti kristalnih zrn in magnetnih domen. Na električno upornost je mogoče vplivati s sestavo jekla in z velikostjo zrn, na obliko in velikost domen pa z velikostjo zrn in z napetostnim stanjem ob površini elektropločevine. Vse nekontrolirane primesi v glavnem slabšajo lastnosti elektropločevin, tudi vključki, mikroskopski in submikroskopski precipitati, ker ovirajo spremembo smeri magnetenja. Precipitati so lahko tudi koristni, če jih uporabimo za preprečenje rasti zrn v nadaljevanju primarne rekristalizacije, s čimer se izvrši sekundarna rekristalizacija šele pri višji temperaturi, ko se lahko razvije koristna tekstura. Tudi nekateri raztopljeni elementi so lahko koristni v majhnih množinah: poročajo namreč, da površinsko aktivni elementi, na primer antimon in kositer, zavirajo rast zrn z lego (111) med primarno in med sekundarno rekristalizacijo (4).

Lastnosti elektropločevin so odvisne od mnogih dejavnikov, ki jih ne bi mogli predstaviti v obsegu tega dela. Zato se omejujemo na razpravo o teksturi in njeni povezanosti z osnovnimi fazami procesa izdelave trakov, vročim in hladnim valjanjem ter žarjenjem za razogličenje. Naša pozornost velja le neteksturirani elektropločevini, saj je proces izdelave teksturirane elektropločevine drugačen, drugačno pa tudi jeklo zanjo.

Delo predstavlja nadaljevanje dveh razprav, v katerih smo analizirali proces primarne rekristalizacije in selektivne rasti posamičnih rekristaliziranih zrn v jeklu iste vrste (5, 6).

2. METODA DELA

Analize in preiskave smo izvršili deloma na industrijskih trakovih, deloma na trakovih, ki so bili vroče izvaljani v laboratoriju v temperaturno deformacijskih pogojih, ki reproducirajo industrijsko valjanje. Mikrostrukturo smo preverjali z opazovanjem v optičnem mikroskopu, teksturo pa smo sledili v strukturnem rentgenu po metodi določanja gostote gosto posedenih kristalnih ploskev (GPKP) (200), (110), (222) in drugih v ravnini pločevine. Ploskvi (200) in (222) sta odseva drugega reda od ploskev (100) in (111), zato ju v nadaljevanju tako označujemo. Rezultate teksturne analize prikazujemo v obliki gostote GPKP, ki je razmerje med gostoto v analiziranem vzorcu in v teoretično izotropnem jeklu.

3. TEKSTURA PO VROČEM VALJANJU

Trakovi se iz slabov zvaljajo po postopku, ki vključuje zaporedje zmanjšanj debeline pri padajoči temperaturi. Eksperimentalnih podatkov o evoluciji mikrostrukture med valjanjem jekla z 1.8 Si ni na voljo, nekatere splošne zakonitosti pa lahko izpeljemo iz tega, kar se ve o procesih med valjanjem mehkega jekla (7, 8). Niso pa izključena odstopanja zaradi ev. vpliva silicija na hitrost statične rekristalizacije avstenita med vtiki in na proces poprave in poligonizacije ferita.

Osnovna razlika med valjanjem na reverzirnem stroju in na konti valjarni je v dejstvu, da se na konti napravah valjanje izvrši pri višji temperaturi, praktično le v področju obstojnosti avstenita, medtem ko je temperatura reverzirnega valjanja nizka in se velik del valjanja izvrši v področju obstojnosti ferita. Razlika je seveda manjša, če je sestava jekla taka, da je feritno v vsem temperaturnem razponu valjanja ali pa vsaj v prevladujočem delu tega razpona. Med jekla z zmanjšano stabilnostjo avstenita spada tudi jeklo z 1.8 % Si. V jeklu z 0,03 C in 1.8 Si je pri 950°c že 80 % ferita, v jeklu z 0.04 C pa je premenska temperatura 875°C. V tem jeklu se pojavi ferit med valjanjem pri temperaturi okoli 870°C (7), zato v prvem jeklu ferit nastaja v večjem deležu že pri cca 100°C višji temperaturi.

Osnovna razlika med ponašanjem avstenita in ferita med vročim valjanjem z zaporednimi vtiki in pri padajoči temperaturi izhaja iz dejstva, da je potrebna za sta114

Relativna gosota GPKP vroče in hladno izvaljanem traku (VV in HV) ter v razogljičenem in rekristaliziranem traku (RR) Fig. 1

Relative density of close-placked crystal planes (CPCP) in hot and cold rolled strip (VV and HV), and decarburized and recrystallized strip (RR)

tično rekristalizacijo avstenita med vtiki 10 do 12 % deformacija, za statično rekristalizacijo ferita med vtiki pa deformacija okoli 62 % (9, 10). V deformiranem feritu sta zelo hitri poprava in poligonizacija (11), zelo hitra pa v feritu z malo ali brez silicija tudi deformacijsko inducirana rast zrn (7). To je neke vrste rekristalizacija »in situ«, pri kateri izredno hitro rastejo posamična zrna in požirajo pri tem poligonizirani ferit. Ker ni na voljo eksperimentalnih podatkov, ni mogoče oblikovati točnega modela procesa vročega valjanja jekla z 1.8 Si. Iz izkušenj pri maloogljičnih jeklih sklepamo, da je pri reverzirnem valjanju rekristalizacija praktično popolna med vtiki, ki se valja v avstenitnem področju, in da rekristalizacije sploh ni, ko se valja v feritnem področju. V dvofaznem področju, ki je tem širše, čim več je v jeklu ogljika, se obe fazi ponašata, kot je zanju značilno, torej avstenit rekristalizira, če je le temperatura zadostna, ferit pa sploh ne rekristalizira. Posledica prepletanja je, da se v jeklu z nizkim ogljikom velikost zrn najprej zmanjšuje, ko se znižuje temperatura valjanja, ko pa se pojavi ferit v primerni množini, velikost zrn, hitro raste pri nadaljnjem znižanju temperature valjanja. S tem nastane v jeklu tudi močna deformacijska anizotropija (7, 8).

Za lažjo oceno stopnje teksture v nadaljevanju te razprave, smo v tabeli 1 zbrali podatke o relativni povprečni gostoti GPKP v ravnini valjanja za tri stanja industrijske elektropločevine: vroče valjano, hladnovaljano ter razogljičeno in rekristalizirano. Podatki v tabeli so povprečje 5 meritev v glavi in nogi različnih kolobar-

Relativna gostota GPKP v jeklu z 0.06 C, ki je bilo v laboratoriju izvaljano od 60 na 11 mm v temperaturnem intervalu med 900 in 790°C, hladno izvaljano na debelino 1,6 mm in na različne načine žarjeno.

Fig. 2

Relative density of CPCP in steel with 0.06 C being rolled in laboratory from 60 to 11 mm in temperature interval between 900 and 790°, cold rolled to 1.6 mm and in various ways annealed. VV — hot rolled, HV — cold rolled, RR — recrystallized, N — normalized

jev. Relativno majhno odstopanje od povprečja pove, da je gostota GPKP dokaj konstantna. Rezultate za posamične industrijske trakove prikazuje slika 1, slika 2 pa za jeklo z 0.06 C, ki je bilo izvaljano v laboratoriju.

Po vročem valjanju je tekstura zadovoljiva, saj je relativno majhna gostota ploskev, ki so povezane s kristalnimi smermi, ki trošijo veliko energije za spremembo smeri magnetenja in je relativno velika gostota ploskev (110) in (100), ki sta magnetno mehki. Podobna tekstura nastane pri vročem valjanju mehkega jekla z 0.06 C, ki je praktično brez silicija. To pove, da je tekstura vročega valjanja neodvisna od sestave jekla in je zato izključno rezultat procesa vročega valjanja, ki poteka praktično skoraj brez rekristalizacije med vtiki. Z magnetnega stališča je tekstura po vročem valjanju dobra. To razlaga, zakaj so v preteklosti dosegali relativno dobre vatne izgube v elektropločevinah, ki so bile na majhno debelino vroče valjane v paketih.

Na sliki 3 vidimo, kako vplivajo pri približno enaki skupni redukciji na gostoto GPKP temperatura valjanja in parcialne redukcije. V sliko je vključen tudi rezultat za jeklo z 0.06 C. Primerjava s tabelo 1 in slikama 1 in 2 pokaže, da se pri laboratorijskem vročem valjanju razvije praktično identična tekstura, kot pri industrijskem vakljanju trakov. Slika 3. kaže da temperatura valjanja in parcialne redukcije ne vplivajo pomembno na teksturo.

Tabela 1: Povprečje relativnih gostot vseh analiziranih ploskev v ravnini valjanja

			Kristaln	a ploskev		
Stanje traka	(110)	(200)	(222)	(211)	(310)	(321)
VVI	$1,11 \pm 0,14$	$0,61 \pm 0,05$	0,38	0.59 ± 0.05	$0,68 \pm 0,1$	0.56 ± 0.05
HV ²	$0,11 \pm 0,03$	$3,84 \pm 0,37$	$2,27 \pm 0,58$	1.49 ± 0.1	0.25 ± 0.05	0.22 ± 0.05
RR ³	$0,54 \pm 0,03$	$1,16 \pm 0,19$	$1,96 \pm 0,52$	$0,92 \pm 0,13$	$0,66 \pm 0,09$	$0,32 \pm 0,05$

1 - VT - 4495 in 4503, G in N

2 - HT - 4482, 4495 in 4503, G in N

3 - RR - 4482, 4495 in 4503, G in N

Slika 3

Relativna gostota GPKP v odvisnosti od končne temperature valjanja za enako končno debelino, doseženo z različnimi redukcijami na vtik. V sliko je vrisan tudi podatek za jeklo z 0.06 C.

ы				 ε.
			-	
_	-	_		

Relative density of CPCP depending on the final rolling temperature for equal final thicknesses achieved by various reductions per pass. Also the data for steel with 0.06 C is plotted.

Poglejmo, kakšna je povezava med teksturo in mikrostrukturo izvajalnega jekla, torej z obliko in velikostjo zrn v izvaljanjem traku. Slike 4, 5 in 6 kažejo mikrostrukturo ob površini trakov, ki so bili izvaljani v laboratoriju pri različni končni temperaturi in redukciji. V notranjosti vseh vzorcev vidimo podolgovata zrna, ki so znak, da jeklo med valjanjem ni rekristaliziralo, ob površini pa različno debel sloj drobnih rekristaliziranih zrn. Na vzorcih za rentgensko analizo se je s površine odbrusila cca 0.1 mm debela plast, torej približno plast drobnih zrn na sliki 6. Zato lahko sklepamo, da se mikrostruktura ob površini ne odraža na teksturi, ki jo določimo z rentgensko analizo. Pač pa je plast drobnih rekristaliziranih zrn zelo pomembna za preoblikovanost jekla s hladnim valjanjem (12). Za nastanek plasti drobnih zrn ob površini še ni bila predložena konsistentna razlaga glede na dejstvo, da rekristalizacijo sproži le deformacija 62 % na vtik, oz. ustrezna kumulativna deformacija iz več vtikov s pogojem, da se med vtiki utrditev zaradi poprave preveč ne zmanjša. Mogoče je naslednja razlaga: jeklo ob površini traka se v stiku z valji nekoliko ohladi, toliko, da je v njem poprava manj učinkovita, kot v bolj vroči notranjosti. Zato se ob površini kumulira utrditev, ki doseže tako stopnjo, da se sproži proces rekristalizacije, ko je valjanje končano, in se dvigne temperatura ob površini traka na račun toplote iz notranjosti. Da je tekstura praktično neodvisna od mikrostrukture jekla ob površini vroče izvaljanih trakov, potrjuje tudi mikrostruktura jekla v industrijskih trakovih. Tu najdemo ob površini zrna različne oblike, od rekristaliziranih do bolj ali manj deformiranih in z različno velikostjo (slike 7, 8, 9 in 10), gostota GPKP pa je v vseh primerih zelo podobna. Drugačno gostoto GPKP pa lahko pričakujemo, če je sloj drugačne mikrostrukture ob površini trakov globlji, toliko debel, da predstavlja pomemben delež globine prodiranja rentgenskega sevanja pri analizi. Mogoče je prav tu razlaga, zakaj je gostota GPKP na istem kolobarju različna v glavi in nogi.

Slika 4, 5 in 6, pov 100x:

Mikrostruktura jekla z 1.8 % Si, ki je bilo v laboratoriju iz predtraka 18 mm izvaljano v platino z debelino 2.3 mm, s temperaturami na koncu valjanja 938°C, 810°C in 710°C.

Fig. 4. 5, 6.

Magn. 100 X: Microstructure of steel with 1.8 % Si being rolled in laboratory from flat billet of 18 mm into billet of 2.3 mm at final rolling temperatures of 938, 810, and 710°C

Našo razpravo lahko v tej točki zaključimo z ugotovitvijo, da med vročim valjanjem, ki poteka brez rekristalizacije med vtiki, nastane v jeklu tekstura, ki jo karakterizira specifična porazdelitev gostot GPKP v ravnini valjanja. Ta porazdelitev je neodvisna od temperature valjanja in od parcialnih redukcij. To je očiten znak, da gre za teksturo, ki je produkt vroče deformacije brez rekristalizacije med vtiki, in z izločanjem deformacijske utrditve iz jekla s popravo, poligonizacijo in deformacijsko inducirano rastjo kristalnih zrn ferita.

Slika 7, 8, 9 in 10, pov. 100x Mikrostruktura ob površini industrijskih trakov, na katerih so bile izvršene analize gostote GPKP. Fig. 7, 8, 9, and 10. Magn. 100 x: Microstructure close to the surface in industrial-

ly rolled strip for which the analysed of the density of CPCP were made

4. TEKSTURA PO HLADNEM VALJANJU

Rezultati v tabeli 1 ter na slikah 1 in 2 kažejo, da ustvari deformacija pri hladnem valjanju popolnoma drugačno porazdelitev gostot GPKP, kot po vročem valjanju. Po hladnem valjanju najdemo v ravnini valjanja močno povečano gostoto ploskev (100), posebno pa (111), in močno zmanjšano gostoto ploskev (110). To se ujema z literaturnimi podatki (13). Gostota zrn z lego (100) oz. (111) v ravnini pločevine se poveča okoli 6-krat, gostota zrn z lego (110) pa se zmanjša okoli 10-krat. V jeklu z 0.06 C, ki je bilo izvaljano v laboratoriju z večjo celotno redukcijo, je tekstura istega tipa, vendar še močnejša. Tekstura je podobna, ko se je jeklo z 0.06 C hladno izvaljalo z izhodiščem v vroče valjanem stanju in v normaliziranem stanju. Pri tem je bila po vročem valjanju v jeklu prisotna že opisana tekstura, po normalizaciji pa je bilo jeklo skoraj izotropno. To je dokaz, da je tekstura, ki nastane v procesu hladnega valjanja, praktično neodvisna od stopnje anizotropnosti jekla pred valjanjem. Pri industrijskem valjanju se trakovi iz debeline okoli 2.2 mm izvaljajo na debelino 0.5 mm v 5 prehodih, pri laboratorijskem valjanju pa se je lamela iz jekla z 0.06 C izvaljala v 12 prehodih iz debeline 10 na debelino 1.6 mm. Med obema vzorcema je razlika v skupni in v parcialnih redukcijah, kljub temu najdemo v obeh primerih enako teksturo, le gostota ploskev (100) in (111) je večja v mehkem jeklu.

5. TEKSTURA PO REKRISTALIZACIJI

Rezultati analiz industrijsko izdelanih trakov in trakov, ki so bili rekristalizirani v laboratoriju, so prikazani v tabeli 1 ter na slikah 1 in 2. Pred začetkom razprave o rezultatih je potrebno vedeti, da se pri industrijskem žarjenju prepletata rekristalizacija in razogljičenje, pri laboratorijskem žarjenju pa poteka le rekristalizacija.

Razogljičenje in rekristalizacija v povprečju izboljšata teksturo v primerjavi z hladnim valjanjem, povečana je gostota ploskev (110), vendar je precej zmanjšana gostota ploskev (100). Gostota ploskev (111) pa je zmanjšana najmanj in je zato po rekristalizaciji precej nad tisto, ki jo najdemo po vročem valjanju. V industrijskih trakovih dosega gostota ploskev (110) približno 50 % nivoja izotropnosti, gostota ploskev (100) je nekoliko nad tem nivojem, gostota ploskev (111) pa je cca 2-krat večja kot v izotropnem jeklu. Podobno ostaja relativno velika tudi gostota drugih ploskev iz družine (111). V povprečju je gostota teh ploskev cca 3.2-krat večja, gostota ploskev družin (110) in (100) pa je cca 60 % večja od nivoja izotropnosti. Iz tega sklepamo, da lahko pričakujemo izboljšanje lastnosti elektropločevine od vsakega ukrepa, ki bi zmanjšal v ravnini valjanja gostoto ploskev družine (111) in povečal gostoto ploskev (110) in 100).

Na sliki 11 je prikazano, kako temperatura rekristalizacije v laboratoriju vpliva na gostoto GPKP. V sliko

Slika 11.

Odvisnost med temperaturo laboratorijske rekristalizacije in relativno gostoto GPKP. V diagramu so vrisane tudi povprečne gostote GPKP industrijskih trakov in rezultati doseženi z variacijo temperature industrijske rekristalizacije po razogličenju.

Fig. 11

Relationship between the temperature of recrystallization in laboratory and the relative density of CPCP. The plot gives also the average densities of CPCP for industrial strips, and the achieved of CPCP for industrial strips, and the achieved results obtained by varying recrystallization temperature in industrial conditions after decarburisation.

so vrisani tudi podatki za poizkus variacije temperature pri industrijski rekristalizaciji po razogljičenju in povprečje rezultatov analize industrijskih trakov. Temperaturo žarjenja smo pri laboratorijski rekristalizaciji ome-jili na območje med 700 in 900 °C, ker je v tem območju poprava praktično zanemarljiva in dobimo mikrostrukturo, ki je produkt primarne rekristalizacije jekla. Že nad 850 °C, posebno pa nad 900 °C, pa se tudi pri laboratorijskem žarjenju pojavlja sekundarna rekristalizacija, ki se kaže v anormalno hitri rasti posamičnih zrn ferita.

Pri najnižji preverjeni temperaturi 700°C nastane tekstura, ki ima določeno gostoto posamičnih GPKP v ravnini valjanja. S povečanjem temperature do 800°C se rahlo poveča gostota ploskev (110) in zmanjša gostota ploskev (100) in (111). Po rekristalizaciji pri 800°C in višje je gostota GPKP podobna kot v industrijskih trakovih, vendarle je v laboratorijskem jeklu nekoliko večja gostota ploskev (100) in (110). Povedali smo že, da se na industrijski liniji izvršita vzporedno razogljičenje in rekristalizacija jekla, pri laboratorijskem žarjenju pa le rekristalizacija. Zato razlagamo razliko v gostoti GPKP med industrijskim in laboratorijskim jeklom z vplivom razogljičenja. V že omenjenih delih smo pokazali, da se v razogličenem jeklu odvija proces sekundarne rekristalizacije jekla v obliki zelo hitre rasti posamičnih zrn iz jeder, ki nastanejo s koalescenco drobnih zrn, ki so nastala pri primarni rekristalizaciji in imajo podobno prostorsko lego (5,6). Ker je po primarni rekristalizaciji največ zrn z lego (111), je razumljivo, da bo tudi največ začetkov sekundarne rekristalizacije s to lego v ravnini pločevine. To se končno pokaže v povečanem deležu teh zrn v industrijski pločevini. Pri industrijskem preizkusu, s katerim smo hoteli preveriti vpliv temperature

rekristalizacije, ki sledi razogljičenju, smo dobili teksturo, ki močno odstopa od teksture po standardni obdelavi. Gostota ploskev (110) in (100) se je sicer sprejemljivo ujemala s povprečjem, gostota ploskev (111) pa je bila mnogo višja. Razlaga je lahko dvojna: gre lahko za šaržo jekla z drugačnim rekristalizacijskim ponašanjem, ali pa je bil poizkus izvršen v pogojih, ki so omogočili intenzivnejšo sekundarno rekristalizacijo. Analiza razpoložljivih podatkov je pokazala, da drži druga razlaga. Nauk iz tega poskusa je, da je tekstura zelo občutljiva na spremembe parametrov razogljičenja in rekristalizacije. Ta proces naj se vodi tako, da bo čim manj sekundarne rekristalizacije.

SKLEPI

Izvršeni so bili različni preizkusi in analize, da bi opredelili, kako se razvija tekstura v osnovnih fazah izdelave dinamo trakov, vroče in hladno valjanje ter razogljičenje in rekristalizacija. Poizkusi in analize so bili izvršeni delno na industrijskih trakovih, delno pa na trakovih, ki so bili izvaljani in rekristalizirani v laboratoriju. Teksturo smo opredelili kot razmerje med gostoto kristalnih ploskev (100), (110) in (111) po določeni termotehnični obdelavi in gostoto v teoretično izotropnem jeklu. Na osnovi vrste in evolucije teksture in mikrostrukture smo prišli do naslednjih sklepov in ugotovitev:

pri vročem valjanju nastane določena tekstura; temperature na koncu valjanja v razponu med 938 in 710°C in velikost redukcije na vtik ne vplivajo zaznavno na to teksturo;

hladno valjanje ustvari teksturo, ki je bogata s ploskavami (100) in (111) v ravnini valjanja traku, zmanjšana pa je gostota ploskev (110) v primerjavi s stanjem po vročem valjanju;

po razogljičenju in rekristalizaciji se tekstura izboljša v primerjavi s stanjem po hladnem valjanju, vendar pa je še vedno manj ugodna kot po vročem valjanju, ker je gostota ploskev (111) v ravnini valjanja še vedno največja;

temperatura rekristalizacije v razponu med 800 in 900°C ne vpliva na teksturo, pač pa se lahko tekstura močno poslabša, če razogljičenje sproži sekundarno rekristalizacijo, pri kateri hitro rastejo predvsem zrna z lego (111) v ravnini valjanja.

LITERATURA

- 1. G. Y. Chin: Journal of Magnetism and Magnetic Materials 9, 1978, 283
- F. Bölling in M. Hastenrath: Stahl u. Eisen, 106, 1986, 57. 2
- S. Taguchi: Transactions ISIJ 17, 1977, 604. 3.
- 4. H. C. Fielder: Journal of Magnetism and Magnetic Materials 26, 1982, 22
- F. Vodopivec, F. Marinšek in F. Grešovnik: Železarski Zbornik 21, 1987, 1, 29-37. 5.
- F. Vodopivec in F. Marinšek: Steel Research 57, 1986, 6. 531.
- F. Vodopivec, M. Gabrovšek in J. Žvokelj: Železarski 7 Zbornik, 20, 1986, 3, 51.
- F. Vodopivec, M. Gabrovšek, M. Kmetič in A. Rodič: Metals Technology 11, 1984, 481.
- T. Tanaka, T. Habata, T. Hatomura in C. Shiga: Micro Al-loying 75, Union Carbide Corporation, New York 1977, 32
- S. Gohda, T. Watanabe, J. Hashimoto: Transactions ISIJ 10. 21, 1981, 6.
- F. Vodopivec, F. Marinšek, M. Torkar in M. Grašič: Poro-čilo Metalurškega instituta, Ljubljana, št. 86-033. 11.
- 12. M. Kmetič, F. Vodopivec in F. Marinšek: Poročilo Metalurškega inštituta, Ljubljana, št. 81-019 in št. 82-036.
- 13. D. N. Hawkins: Metals Technology 5, 1978, 37.

ZUSAMMENFASSUNG

Das Walzgefüge wurde als relative Dichte der Kristallflächen (100), (110) und (111) in der Walzebene definiert. Das Mikrogefüge aber wurde im optischen Mikroskop bestimmt. Nach dem Warmwalzen arhält das Blech ein Gefüge, dass nach einer überdurchschnittlichen Dichte der Flächen (110) in der Walzebene charakteristisch ist. Das Gefüge ist praktisch unabhängig von der Endwalzemperatur im Bereich von 938 bis 710 C, der Reihenfolge der Stichabnachme und vom Mikrogefüge von Stahl dicht an der Bandoberfläche. Bei den ähnlichen Walzbedingungen ensteht im Stahl mit 1,8 % Si ein ähnliches Walzgefüge wie im Stahl mit 0,06 %C. Nach dem Kaltwalzen wird die Dichte der Flächen (100) und (111) in der Walzebene stark vergrössert,

Nach der Kristallisation nähert sich der Stahl der Isotropie, jedoch bleibt die Dichte der Flächen (110) unter dem Durchschnitt, und über dem Durchschnitt die Dichte der Flächen (111) in der Blechebene. Die Entkohlung begünstigt die sekundäre Rekristallisation bei welcher einzelne Körner mit der Lage nahe (111) sehr schnell wachsen. Das Walzgefüge bestimmt an Proben aus dem Betrieb stimmt seht gut mit dem Gefüge erhalten bei laboratorischer Prozessführungerein überein.

SUMMARY

The texture was defined as relative density of crystal planes (100), (110), and (111) in the plane of rolling, while the microstructure was determined by optical microscope. After hot rolling the texture in plate is characterized by an overaverage density of (110) planes in the plane of rolling. The texture is practically independent of final temperature of rolling in the interval from 938 to 710°C, on the reduction sequence in single passes, and on the microstructure of steel close under the strip surface. In similar rolling conditions a similar texture is obtained in steel with 1.8. Si and in steel with 0.06 C. After cold rolling the density of (100) and (111) in the plane of rolling is highly increased. After recrystallization steel approaches to isotropical state, but the underaverage density of (110) planes, and overaverage density of (111) planes in the plane of rolling remain. The decarburusation facilitates the secondary recrystallization in which single grains in position close to (111) grow rapidly. The texture determined in industrial samples is in a good agreement with the texture obtained in the laboratory treatment of steel.

ЗАКЛЮЧЕНИЕ

Текстура была определена как релятивная густота кристаллических плоскостей (100), (110) и (111) в равнине прокатывания, а микроструктура в оптическом микроскопе. После горячей прокатки получает листовая сталь текстуру, которая примечательна по свыше средней густоте плоскостей (110) в равнине прокатки. Практически текстура не зависит от температуре конца прокатки в диапазоне от 938 до 710° С от последовательности редукции на пропуск и от микроструктуры стали сразу об поверхности ленты. При подобных условиях прокатки развивается подобная текстура в стали с содержанием 1.8 Si и в стали с 0.06 С. После холодной прокатки сильно увеличина густота плоскостей (100) и (111) в равнине прокатки. После рекристаллизации сталь приближается изотропности, но остаётся свыше среднего густота плоскостей (110), а свыше среднего содержание густоты плоскостей (111) в равнине листа стали. Обезуглероживание улучшает вторичную рекристаллизацию, при которой быстро возрастают отдельные зёрна положения (111). Текстура, определена на промышленных образцах, хорошо согласуется с текстурой, которая получена в сталях лабораторным процессом.

Vpliv trenja, poti, drsne hitrosti in pritiska na obrabo

UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67

Franc Uranc

Trenje in obraba sta med največjimi večnimi problemi tehnike in tehnologije. Raziskava skuša nekoliko osvetliti odvisnost obrabe od drsne poti, pritiska in hitrosti drsenja ter od trenja.

UVOD

Dosedanje preiskave so pokazale, da je visoka trdota daleč najpomembnejša od splošno merjenih lastnosti snovi, tudi ko želimo veliko obrabno obstojnost.

Na obrabno obstojnost pa vpliva tudi žilavost snovi, tako da so na povečanje pritiska ali hitrosti drsenja krhka jekla občutljivejša od žilavih. Pri majhnih razlikah pritiskov ali hitrosti ni vpliva žilavosti na obrabno obstojnost.

Vedno je trše jeklo obstojnejše od mehkejšega, če je razlika med njima več kot 5 HRC in če so obrabne razmere v mejah: pritisk pod 2 N/mm², hitrost pod 0,8 m/s.

DOLŽINA DRSNE POTI IN TRDOTA PREIZ-KUŠANCEV

Merili smo potek obrabe sedmih različno trdih jeklenih preizkušancev. Obraba je potekala pri pritisku 2 N/mm² in hitrosti drsenja 0,03 m/s po plošči iz žarjenega utopnega jekla.

Slika 1a kaže, da je obraba pri preizkušancih, mehkejših od 40 HRC, obratno sorazmerna trdoti, nad to trdoto pa je videti odstopanje vrednosti obrabe od krivulje predvsem navzgor, k večji obrabi.

Različni obliki točk pomenita dvoje meritev obrabe. Manjša obraba (krožci) je meritev po taki obrabi, ki je še sorazmerna dolžini obrabne poti. Večja obraba (križci) je blizu končni obrabi ter je merjena po 100 metrih drsenja. Razlika med obema meritvama je zaznavna le pri preizkušancih, mehkejših od 40 HRC.

Slika 1b kaže, da odstopanje točk obrabe treh preizkušancev od krivulje ni posledica različnih količnikov trenja. Pogosto ne moremo meriti obrabe do istega stanja, ko je stopnja povečevanja obrabe že zelo majhna. Ne vemo, po kako dolgem drsenju nastopi zmanjšana stopnja obrabe v različnih razmerah pri posameznih jeklih.

Poskušajmo ugotoviti, ali moremo iz kratkotrajnih poskusov sklepati vsaj na odnose med dolgotrajnimi obrabami jekel!

Slika 2 kaže, da je strmina krivulje začetne obrabe sorazmerna s končno obrabo na utopni plošči. Predpostavimo, da velja podobna linearna odvisnost tudi pri obrabi z drugačnimi snovmi, z drugimi hitrostmi in pritiski. Če ta predpostavka velja, nam omogoča sklepanje na obrabno obstojnost različnih preizkušancev na podlagi skrajšanih poskusov. Če so vsi primerjani preizkušanci drseli enako dolgo pot po enakem delovnem sred-

Slika 1:

Odvisnost obrabe (a) in produkta obrabe ter trenjskega količnika (b) od trdote malolegiranih jekel. Preizkušanci drsijo po plošči iz utopnega jekla s hitrostjo 0,03 m/s in pritiskom 2 N/ mm².

o ... največja obraba, ki je še sorazmerna z drsno potjo,

x ... obraba po 100 m drsenja.

Fig. 1

Dependence of the wear (a), and wear product and friction coefficient (b) on the hardness of low alloyed steel. Samples are sliding on a plate of die steel with speed of 0,03 m/s and under pressure of 2 N/mm².

0 ... the highest wear still proportional to the path of sliding x ... wear after 100 m of sliding

stvu, smemo namesto strmine premice v diagramu (obraba – drsna pot) upoštevati kot merilo obrabe kar obrabo. Podobno sorazmerje obrabne obstojnosti in trdote kot pri obrabi z utopnim jeklom velja pri obrabi z brusom. Nesorazmerno malo se obrablja le jeklo, mehkejše od 21 HRC.

Slika 2:

Odvisnost intenzivnosti obrabe pri 10 m drsenja od obrabe po 100 ali več metrih drsenja preizkušancev iz malolegiranih jekel po plošči utopnega jekla.

 $p = 2 N/mm^2$, v = 0.03 m/s.

Fig. 2

Relationship between the wear intensity after 10 m of sliding and the wear after 100 and more meters of sliding on the plate

of die steel for samples of low-alloyed steel $p = 2 N/mm^2$

v = 0.03 m/s

2. OBRABNA SNOV IN TRENJE

Obraba je na neki način odvisna od trenja med preizkušancem in delovno snovjo. Na sliki 3 so narisane vrednosti trenjskih količnikov štirih ali osmih jekel, drsečih po treh snoveh.

Če je delovna snov zelo trda (brusni kamen) ali zelo mehka (jeklo trdote 110 HB), je trenje obratno sorazmerno trdoti preizkušancev.

Kot kaže, se preizkušancem s trdoto pod 30 HRC z zmanjšajočo trdoto zmanjšuje trenje na brusnem kamnu.

V primeru, ko so preizkušanci podobno trdi kot delovna snov, je količnik trenja sorazmeren trdoti preizkušancev, vse dokler niso preizkušanci za okoli 15 HRC trši od delovne snovi.

S slike 4 vidimo, kako se povečuje obraba treh vzorcev jekla, drsečih po snoveh, na katerih imajo preizkušanci zelo različno trenje.

Mehko jeklo (110 HV) zelo malo ali nič ne obrablja preizkušancev. S podvojitvijo trenja, tj. z dresenjem na utopni plošči, se za več kot 100-kratno poveča obraba preizkušancema trdot 26 oz. 33 HRC. Veliko manj se poveča najtršemu preizkušancu, verjetno zato, ker je za celih 15 enot HRC trši od delujoče snovi, utopa. Obraba na enoto dolžine poti v območju intenzivne obrabe je pri drsenju po mehkem jeklu manj kot 0,05 mg/m (po 10 m drsenja, po 20 metrih se celo poveča masa preizkušancev), pri drsenju po utopnem jeklu pa je od 0,1 mg/m (jeklo trdote 45 HRC) do 1 mg/m.

Vpliv trdote jeklenih preizkušancev in vrste podlage – delovne snovi na količnik drsnega trenja.

Fig. 3

Influence of the hardness of steel samples and the type of pad — abrasion material on the coefficient of sliding friction

Del	ovine show	4	. p.	۲	
Ozreakia	Vesto		D.tor	(m/a)	(m)
t	Jekio (150HY)	11,0	1	0,1	10
11	Jek to (300 HV)	0,22	2	0,03	60
Π_0	Brusni kanen	0,7	0,03	0,2	47
Ille	Brushi kamen	4.0	0,03	0,8	47

Odvisnost obrabe od trdote preizkušancev in od trenja z delovno snovjo

Fig. 4

Wear dependence on the hardness of samples and the friction of abrasion material

Drsenje po brusni plošči terja trikrat večjo silo za premagovanje trenja, kot je potrebna za drsenje po utopu. Intenzivnost obrabe je 1 do 2 mg/m, torej 2 do 10-krat večja kot po drsenju po utopni plošči.

Ce je hitrost drsenja 0,2 m/s, sta obrabi trših preizkušancev enaki kljub zelo različnim trenjem. Če pa dvignemo hitrost na 0,8 m/s, se obraba vseh preizkušancev poveča glede na obrabo z utopom za 35 do 40 mg.

Če je hitrost drsenja po brusnem kamnu 0,8 m/s, se zdi, da se s prehodom od utopnega jekla, kot delovnega sredstva, na brusno ploščo poveča obraba vseh treh jekel sorazmerno s trenjem. Hitrost 0,2 m/s po brusu pa zmanjša razliko med obrabama žilavih jekel (26 HRC, 90 J in 45 HRC, 44 J) proti razliki obrab pri drsenju po utopnem jeklu.

Slika 5 kaže odvisnost obrabe od trdote jekel in od vrste delovne snovi (približne vrednosti tornega količnika). Razen v primeru počasnega drsenja po brusni plošči je obraba obratno sorazmerna trdoti jekla. V primeru drsenja po mehkem jeklu pride do navarjenja tega jekla na preizkušanec, kot kaže diagram.

Premici obrab z utopno in brusno ploščo tečeta paralelno, kar napoveduje možnost izračuna obrabe za vsak drsni par pri danih hitrostih, pritisku in drsni poti ter trdoti drsečega telesa.

3. TRENJE IN HITROST DRSENJA

Na sliki 6 je z razmerjem »k« prikazano povečanje obrabe zadelj povečanja hitrosti od 0,03 na 0,12 m/s. Preizkušance je obrabljalo utopno jeklo. Povečanje obrabe je večje pri trših jeklih, predvsem pri drugem (krhkem: 26 J), kot pri žilavem jeklu, trdote 26 HRC (90 J).

Produkt količnika »k« s trenjskim količnikom ne pokaže spremembe v poteku krivulje.

Delovna snov Oznaka Vrsta		٣	P (N/mm ²)	v (m/s)	s (m)
I	Jeklo (150 HV)	0,11	1	0,1	10
п	Jeklo (300 HV)	0,22	2	0,03	60
IIIa	Brusni kamen	0,7	0,03	0,2	47
IILb	Brusni kamen	0,7	0,03	0,8	47

Slika 5:

Odvisnost obrabe preizkušancev iz malolegiranih jekel od njihove trdote in od vrste delovne snovi.

 $S_k \ldots$ največja obraba, ki je še sorazmerna z dolžino drsne poti. Razmere pri obrabi so enake, kot kaže razpredelnica ob sliki 4.

Fig. 5

Dependence of wear of low-alloyed steel samples on their hardness and the type of abration material

 $S_k \dots$ the highest wear still proportional to the length of the sliding path. The conditions of the wear testing are given in table at Fig. 4

Slika 7 kaže velik vpliv povečevanja hitrosti drsenja na absolutno povečanje obrabe mehkega jekla (26 HRC) in na relativno povečanje obrabe trdega jekla (45 HRC). Učinek povečanja hitrosti je velik pri spremembah v območju majhnih hitrosti (0,01-0,03 m/s), medtem ko je pri povečanju od 0,03 na 0,12 m/s le 50 % povečanja obrabe jekla, trdote 26 HRC, oz. 4-kratno povečanje obrabe preizkušanca, trdote 45 HRC.

Če je pritisk preizkušanca na delovno snov le 1 N/ mm², je učinek povečanja hitrosti nasploh zelo majhen

Slika 6:

Povečanje obrabe zaradi povečanja hitrosti drsenja po utopni plošči je večje pri tršem jeklu. Dolžina drsenja je 30 m

Increase of wear due to increased sliding speed on the die plate is greater for a hard steel. Length of sliding path was 30 m

Slika 7:

Vpliv hitrosti in dolžine drsenja različno trdih jekel na njihovo obrabo z utopno ploščo.

 $p=2 N/mm^2$

Fig. 7

Influence of the speed and length of sliding of variously hard steel on their wear on the die plate $p=2 N/mm^2$

Vpliv pritiska in hitrosti drsenja različno trdih preizkušancev na njihovo obrabo z utopno ploščo

Fig. 8 Influence of pressure and the sliding speed of variously hard steel on their wear on the die plate

Slika 9:

Vpliv hitrosti drsenja po brusu na obrabo različno trdih jekel. Dolžina poti je 47 m p=0,03 N/mm²

Fig. 9

Influence of the sliding speed on a grinder on the wear of variously hard steel. Length of path was 47 m. p = 0.03 N/mm²

sl. 8. Pri mehkem jeklu more sicer prevladati učinek desetkratno povečane hitrosti nad učinkom za polovico zmanjšanega pritiska, to kažeta zgornji točki obrabe preizkušanca s trdoto 26 HRC, toda jeklo je v vseh pri-

SI. 9 ne kaže bistvene razlike med krivuljama obrabe z brusno ploščo pri večji ali manjši hitrosti, razen pri jeklu, trdote 45 HRC in žilavosti 44 J. Očitno je razlika med hitrostma drsenja po brusni plošči premajhna, da bi razkrila učinek žilavosti na obrabno obstojnost.

Veliko absolutno povečanje obrabe mehkejših izmed preizkušanih jekel pri povečanju hitrosti kaže slika 10. Povečanje obrabe zaradi povečanja hitrosti nad 0.03 m/s je posebno izrazito pri krhkem jeklu (33 HRC).

Nenavadno malo se poveča obraba s povečanjem hitrosti po brusu žilavemu jeklu, trdote 26 HRC, jeklu s trdoto 45 HRC pa se celo zmanjša, kar je verjetno zasluga bainitne strukture tega preizkušanca. Nasploh pa žilavost ne vpliva toliko, da bi spremenila vrstni red obrabnih obstojnosti, določen z vrstnim redom trdot preizkušanca.

Razlika med obrabo pri večji hitrosti in obrabo pri manjši hi-

trosti. 1. p.= 2 N/mm², v=0,01 m/s p=1 N/mm², v=0,03 m/s 1... p=2 N/mm², v=0,01 m/s v=0,03 m/s 3... p=2 N/mm²,v=0,03 m/s v = 0.12 m/s4... p=0,03 N/mm², v=0,2 m/s v = 0.8 m/s1, 2, 3 . . . po 10 m drsenja po utopni plošči 4... po 47 m drsenja po brusni plošči Fig. 10 Difference in wear at higher speeds and wear at lower speeds 1. p.= 2 N/mm², v=0.01 m/s

 $p = 1 N/mm^2$, v = 0.01 m/s

v=0.03 m/s

- ... p=2 N/mm², v=0.03 m/s
- 3... p=2 N/mm², v=0.03 m/s
- v = 0.12 m/s

4...p=0.3 N/mm² $v = 0.7 \, m/s$

1, 2, 3 . . . after 10 m sliding on die plate

4 . . . after 47 m sliding on grinder plate

4. MOŽNOST NAPOVEDOVANJA OBRABE

Na podlagi podatkov, ki jih vsebujejo diagrami 7, 8, 9, je narisan diagram na sliki 11 in so izračunane strmine krivulj obrabe za diagram na sliki 12. Sl. 12 kaže odvisnost obrabe od trdote preizkušanca, ne glede na vrsto delovne snovi.

Ker je med obrabama z mehkim jeklom in s trdim brusnim kamnom vendarle razlika, je ob premicah, ki podajajo obrabo z brusnim kamnom, napisan preizku-sni pritisk v oklepajih (0,03 N/mm²). Dejanska stična površina z brusom je 12 do 15-krat manjša od geometrijske (1). Poleg pritiska je označena ob ustreznih krivuljah tudi dolžina drsnih poti, po kateri je bila izmerjena obraba.

Približne vrednosti obrabe različno trdih malolegiranih jekel po drsenju s pritiski med 1 do 3 in več N/mm² in hitrostmi 0,01 do 0,8 m/s.

Fig. 11

Approximate values of wear for variously hard low-alloyed steel after sliding under pressures between 1 and 3 or more N/mm2 and at speeds 0.01 to 0.8 m/s

Slika 12:

Intenzivnost obrabe v začetnem stadiju v odvisnosti od trdote preizkušanih jekel

Fig. 13

Intensity of wear in the initial period depending on the hardness of tested steel Slika 12 kaže za vsak preizkušanec (dane trdote in prikazane žilavosti) strmino krivulje začetne obrabe, izračunane po diagramih obraba — drsna pot. Taka strmina krivulje oz. stopnja obrabe je sorazmerna končni obrabi z utopom in domnevno tudi z drugimi snovmi (brusnim kamnom), zato naj bi podatki s tega diagrama kazali resnična razmerja med odpornostmi različno trdih jekel proti obrabi.

Nad trdoto 26 HRC velja premo sorazmerje obrabne obstojnosti in trdote, pod to trdoto pa je zelo pomembna žilavost.

5. ZAKLJUČKI

 Obrabno obstojnost proti določeni delovni snovi dobro opredeli intenzivnost obrabe v začetnem stadiju, tj. strmina začetka krivulje v diagramu obraba — drsna pot.

2. Drsna obraba je obratno sorazmerna trdoti preizkušancev, če le-ti niso za več kot 10 enot Rockwella (HRC) mehkejši ali trši od delujoče kovine, v tem primeru žarjenega utopnega jekla. Obratno sorazmerje velja tudi pri obrabi z brusom, le jeklo trdote 21 HRC (in verjetno mehkejša) se obrablja manj, kot ustreza zakonu obratnega sorazmerja.

3. V območju obratnega sorazmerja obrabe in trdote je pri drsenju po utopnem jeklu trenjski koeficient premo sorazmeren, pri drsenju po brusni plošči pa obratno sorazmeren trdoti preizkušancev. Delovna snov, ki poveča trenje 2 do 3-krat, poveča obrabo jekel 2 do 20-krat. Odvisnost med trdoto in obrabo se s spreminjanjem hitrosti drsenja ne spreminja.

4. Povečanje hitrosti drsenja po utopni plošči s pritiskom 2 N/mm² sorazmerno poveča obrabo jekla, trdote 45 HRC, pol manj pa se poveča absolutna obraba mehkejših jekel (npr. 26 HRC) in relativna obraba jekla, trdote 45 HRC. V preizkusnih območjih s tlakom močneje kot s hitrostjo vplivamo na obrambo.

Podvojitev tlaka poveča obrabo jekla, trdote 45 HRC, sedemkrat in obrabo jekla, trdote 26 HRC, dvainpolkrat.

 Jeklu z znano trdoto moremo napovedati relativno obrabo, tj. intenzivnost obrabe v njenem začetnem stadiju, če poznamo hitrost, pritisk in trdoto delovne snovi.

Literatura:

 Wellinger K., H. 94) Uetz, G. Gommel: Verschleiss durch Wirkung von körnigen mineralischen Werkstoffen. Materialprüfung 9 (1967) Nr. 5, s. 153-160.

ZUSAMMENFASSUNG

Eine Vergrösserung der Reibung um zwei bis dreimal durch die Änderung des Arbeitsstoffes verursacht um zwei bis zwanzigmale Vergrösserung des Verschleisses. Während eines schleifenden Verschleisses ist die Reibung umgekehrt proportional der Härte der Probe, wahrend des adhesiven Verschleisses ist sie direkt proportional.

Die Intensität des Verschleisses im Anfangsstadium kann als ein Mass der Nichtwiederstandfähigkeit gegen Verschleiss im allgemeinen angenommen werden. Für bestimmte Drücke und Gleitgeschwindigkeiten können die Verschleissbeständigkeit und die Härte als direkt proportional aufgezeichnet werden.

Auf den adhesiven und den schleifenden Verschleiss hat im untersuchten Bereich die Druckvergrösserung einen dreimal grösseren Einfluss als die Vergrösserung der Gleitgeschwindigkeit. Mit der Druckvergrösserung wird der Verschleiss härterer Stähle relativ grösser als der Verschleis von weicheren Stählen.

SUMMARY

Friction-testing media which increase friction up to twice or three times accelerate the wear by the factor of two to twenty. Friction by abrasion is inversely proportional to the hardness of the sample, while friction by adhesive wear is directly proportional to the hardness.

Intensity of wear in the initial period can be the measure for wear resistance in general. Wear resistance and hardness are linearly proportional for definite pressures and speeds of sliding.

In the investigated region of applied pressures and speeds there is the effect of pressure increase three times higher than the effect of the speed increase. The increased pressure effects the wear of harder steel to a greater extent than the wear of softer steel.

ЗАКЛЮЧЕНИЕ

Двоиное до тройное увеличение трения при помощи изменения материи увеличивает износ в два до двадцати раз. В течении абразивного износа трение обратно пропорционально твёрдости образца, а при адрезийском износу — прямо пропорционально.

Интенсивность износа в начальной фазе представляет собой мерило неустойчивости против износу вообще. Можно легко нарисовать прямое соотношение устойчивости износа и твёрдости для определенные давления и быстроты скольжения.

На адгезийский и абразивный износ имеет в исследованных областях увеличение давления три раза больше влияние чем увеличение быстроты скольжения. С увеличением давления релятивно больше увеличивается износ твёрдых сталей в сравнении с более мягкими.

Last and the second sec

O periodičnosti kristalizacije metala

UDK: 621.74.047:548.5:669-17 ASM/SLA: D92, E215, N12

Ice B. Risteski

U ovom radu je analitički analizirana periodičnost procesa kristalizacije binarnog sistema čije se komponente rastvaraju neograničeno u tečnom stanju a ograničeno u tvrdom. Kao sredstvo za analizu korišćena je teorija homogenih linearnih diferencijalnih jednačina drugog reda.

UVOD

Tretiranje fizičko-mehaničke pojave kristalizacije omogoćava da se uz određivanje toplotne provodljivosti očvrslog metala u zavisnosti od temperature, izvrši i kvalitativna analiza procesa kontinuiranog livenja'.

Vreme trajanja kristalizacije posmatra se kao monotoni proces. Matematičko opisivanje procesa dato je u zadatku Stefana, za čije je rešenje posvećen niz od dese-tak orginalnih radova². Posmatranja osobine metala, u pravcu normalnom frontu kristalizacije, svode se na pretpostavku o periodičnom karakteru procesa kristalizacije3.4. Izučavanje hemijske nejednorodnosti monokristala formirane na različite načine omogučilo je da se otkrije njihova slojevitost rasta ili »stratuma« sa povećanom koncentracijom primesa5. Usavršavanje tehnike posmatranja rasta kristala daje mogućnost da se uoči periodična promena brzine kristalizacije6.7. Periodičnost procesa rasta, utvrđena je i pri formiranju bočnih grana rastećeg kristala5.8. Pri posmatranju brzine kristalizacije utvrđena je skokovita promena grane kako u momentu njene pojave, tako i pri daljnjem rastu kristala8. Ispitivanjem brzine podhlađivanja na frontu rastećeg kristala, ustanovljena je promena podhlađivanja u vremenu^{9,10}. Periodičnost u procesu kristalizacije odreduje se induktivnim senzorom11.

TEORIJA MATEMATIČKOG MODELA KRISTALIZACIJE

Dat je sistem od dve komponente A i B (slika 1).

U tečnom stanju komponente se rastvaraju neograničeno a u tvrdom ograničeno. Koncentracija komponente B u tečnosti je B₀.

Pri snižavanju temperature do T₁ počinje obrazovanje tvrde faze sa koncentracijom komponente B1. Zato, da bi postojalo očvršćavanje, nepohodno je na frontu kristalizacije da ima podhlađivanje, t. j. sistem da ima energetski stimulans za prelaz iz jedne faze u drugu.

U saglasnosti sa teorijom normalnog rasta kristala12:

$$V_k = d\varepsilon/d\tau = k (T_3 - T_2) = k \Delta T, \qquad (1)$$

gdje je:

k

- V_k brzina kristalizacije, m/s;
- podhlađivanje, K; ΔT
 - koeficijent proporcionalnosti, m/(s·K);
- T₁ ravnotežna temperatura na frontu kristalizacije, K;
- T_2 stvarna temperatura na frontu kristalizacije, K.

Komponenta B očvršćava i njena koncentracija ispred fronta kristalizacije se povećava. Pri tome dolazi do smanjenja ravnotežne temperature. Podhlađivanje se smanjuje. Brzina kristalizacije se smanjuje u saglasnosti sa jednačinom (1). Brzina odvajanje toplote ostaje praktički ne promenjena, pošto smanjenje temperature na frontu kristalizacije nije veliko. Tada se snižava i temperatura T2, jer je izdvajanje toplote smanjeno zbog sniženje brzine kristalizacije i, zbog toga je smanjeno izdvanje latentne toplote kristalizacije. U skladu sa tim, ako se odvod toplote praktički ne menja podhlađivanje raste, što povlaći povećanje brzine kristalizacije. Ciklus se ponavlja.

Matematički zadatak se formuliše na sledeći način:

$$\frac{\partial T(x_i, \tau)}{\partial \tau} = a \frac{\partial^2 T(x_i, \tau)}{\partial x^2} \quad (\tau > 0; \ 0 < x < \infty); \qquad (2)$$

$$T_1(\tau_1) = \text{const}; \qquad (3)$$

$$I_3(\tau, \varepsilon) = \text{const.}$$
 (4)

Na granici raspodele faza je:

$$q_0 - q_t - q_a = 0;$$
 (5)

Smederevo.

gdje je:

- q₀ količina izdvojene toplote pri kristalizaciji;
- količina toplote odvedena toplotnom q, provodljivosti;
- količina toplote akumulirana u očvrslom sloju;
- q_a količina toplote akumulirana u ovvisio
 T₃ ravnotežna temperatura očvršćavanja;
- temperatura površine odlivka.

U poznatoj pretpostavci zadatka Stefana granični uslov se formuliše na sledeći način:

$$q_0 - q_t = 0.$$
 (6)

Količina toplote izdvojena kao rezultat kristalizacije, odvodi se toplotnom provodljivošću na granici raspodele faza. U pretpostavci zadatka od koga se polazi u ovom radu, predviđa se, da se izdvojena toplota u celosti ne odvodi preko kristalisanog sloja, nego da se jedan deo akumulira i u tom sloju. Količina toplote akumulirana u tečnom rastopu se zanemaruje.

Posmatra se sloj u ravni normalnoj na front kristalizacije. Količina izdvojene toplote pri kristalizaciji je proporcionalna brzini kristalizacije:

$$q_0 = s \rho \gamma (d\epsilon/d\tau), \tag{7}$$

gde je:

- s površina sloja, m²;
- toplota kristalizacije, J/kg; ρ
- vreme kristalizacije, s; τ
- debljina kristalisanog sloja, m;
- specifična težina metala, kg/m³. 9

Iz metala koji kristališe, toplota se odvodi preko očvrslog sloja:

$$q_t = s\lambda (dT/d\epsilon).$$
 (8)

Količina toplote koja se troši za zagrevanje sloja male debljine, jednaka je količini akumulirane toplote:

$$q_a = sc\gamma x_0 (dT/d\tau), \qquad (9)$$

gde je:

c — toplotni kapacitet, J/(kg·K);

λ — koeficijent toplotne provodljivosti, W/(m·K).

Pri proračunu qa, uzima se, da se temperatura u sloju x₀ menja linearno (slika 2). Ako se indeks »0« odnosi na početak zagrevanja, a indeks »2« na kraju, tada je,

Presentation of the deduction of the crystalization-rate equation

uzimajući u obzir jednačinu (3), srednje povećanje temperature:

 $\Delta t = (T_{22} + T_{12})/2 - (T_{20} + T_{10})/2 = (T_{22} - T_{20})/2. (10)$ Zamenom jednačina (7), (8) i (9) u jednačini (5) dobija se:

$$\rho\gamma (d\epsilon/d\tau) - \lambda (dT/d\epsilon) - c\gamma x_0 (\partial T/\partial \tau) = 0.$$
(11)

Sve promenljive veličine koje ulaze u jednačinu (11) se odnose na granicu raspodele tečne i tvrde faze.

Na granici raspodele faza, je temperaturni gradijent:

$$\Delta T = T_3 - T_2, \tag{12}$$

gde je T2 promenljiva veličina. U slučaju kada funkcija f(T) zavisi od dve promenljive τ i ε, onda je njen totalni diferencijal:

$$dT = (\partial T / \partial \tau) d\tau + (\partial T / \partial \varepsilon) d\varepsilon.$$
(13)

Za uprošćavanje rešenja isključuje se jedna od promenljivih T.

Zavisnost između brzine kristalizacije V_k, debljine kristalisanog sloja ε i vremena τ određuje se iz zavisnosti:

$$V_k d\tau = d\epsilon, \quad d\tau = d\epsilon/V_k.$$
 (14)

Iz jednačine (1) vidi se, da brzina kristalizacije zavisi od podhlađivanja, t. j.

$$V_k = f(T). \tag{15}$$

Zamenom jednačine (15) u (14) se dobija

$$d\tau = d\epsilon/f(T)$$
. (16)

Iz jednačine (16) se vidi, da zavisnost od τ može biti zamenjena sa zavisnosti (13). Na taj način, u jednačini (13) zavisnost od vremena se isključuje i jednačina (13) može se zapisati kao:

$$dT = (\partial T / \partial \epsilon) d\epsilon$$
(17)

i

$$dT/d\varepsilon = \partial T/\partial\varepsilon, \tag{18}$$

 $d^2T/d\epsilon^2 = \partial^2T/\partial\epsilon^2$. (19)

Uzimajući u obzir jednačine (17), (18) i (19), jednačina (5) dobija oblik:

$$\rho\gamma (d\varepsilon/d\tau) - \lambda (dT/d\varepsilon) - c\gamma x_0 a (d^2T/d\varepsilon^2) = 0.$$
(20)

Pošto je $a = \lambda/c\gamma = > c\gamma a = \lambda$, onda jednačina (20) dobija sledeći oblik:

$$\rho\gamma k (T_3 - T_2) - \lambda (dT/d\varepsilon) - \lambda x_0 (d^2T/d\varepsilon^2) = 0, \quad (21)$$

Promenljive u ovoj jednačini (21) su temperatura na frontu kristalizacije T2 i debeljina kristalisanog sloja E. Na taj način trodimenzionalni zadatak je sveden na dvodimenzionalni. Početna debljina kristalisanog sloja xo može se računati kao konstantna veličina, jer je u tom vremenu podhlađivanje na frontu kristalizacije jednako nula.

Jednačina (21) se razmatra kao homogena linearna diferencijalna jednačina drugog reda se konstantnim koeficijentima. Jednačina (21) može se napisati u sledećem obliku:

 $(d^{2}T/d\epsilon^{2}) + (1/x_{0})(dT/d\epsilon) - (\rho\gamma k/\lambda x_{0})(T_{3} - T_{2}) = 0.$ (22) Uvode se smene:

$$\Delta T = T_3 - T_2 = y;$$
 $T_3 = const$ (23)

$$-\frac{d\Delta T}{d\varepsilon} = -\frac{dT}{d\varepsilon} = \frac{dy}{d\varepsilon}; \frac{dT}{d\varepsilon} = -\frac{dy}{d\varepsilon}; \frac{d^2y}{d\varepsilon^2} = \frac{d^2T}{d\varepsilon^2}.$$
 (24)

Uzimanjem u obzir jednačine (24) jednačina (22) dobija oblik:

O periodičnosti kristalizacije metala

ili

po n:

$$-\frac{d^2y}{d\epsilon^2} - \frac{1}{x_0}\frac{dy}{d\epsilon} - \frac{\rho\gamma k}{\lambda x_0}y = 0$$
(25)

$$\frac{d^2 y}{d\epsilon^2 \sigma} + \frac{1}{x_0} \frac{dy}{d\epsilon} + \frac{\rho \gamma k}{\lambda x_0} y = 0.$$
(26)

Rešenje homogene linearne diferencijalne jednačine drugog reda (26) dato je u literaturi¹³.

Originalno partikularno rešenje diferencijalne jednačine oblika:

$$a_0y + a_1y' + \ldots + a_ny^{(n)} = \sum_{\nu=0}^m c_{\nu}x^{\nu},$$

dao je autor ovog rada u literaturi14.

Uvode se smene:

$$y = e^{n\varepsilon}$$
, $dy/d\varepsilon = ne^{n\varepsilon}$, $d^2y/d\varepsilon^2 = n^2e^{n\varepsilon}$. (27)
Zamenom (27) u (26) se dobija:

$$e^{n\varepsilon} \left(n^2 + \frac{1}{x_0} n + \frac{\rho \gamma k}{\lambda x_0} \right) = 0$$
 (28)

$$e^{n\varepsilon} \neq 0, \quad \forall n \land \varepsilon \neq -\infty$$

 $\frac{2}{2} + (1/x_{\circ})n + (\alpha \vee k/\lambda x_{\circ}) = 0$ (29)

$$1 \sqrt{1 - wk}$$

$$n_{1,2} = -\frac{1}{2x_0} \pm \sqrt{\frac{1}{4x_0^2} - \frac{\rho\gamma k}{\lambda x_0}}.$$
 (30)

Koreni mogu da budu realni samo pri uslovu da je:

$$1/4x_0^2 > \rho\gamma k/\lambda x_0$$
. (31)

Uzima se granični uslov

 $1/4x_0 = \rho\gamma k/\lambda$ ili $x_0 = \lambda/4\rho\gamma k.$ (32)

Ocenimo značenja veličine koje ulaze u jednačini (32).

Za čelik važe koeficijenti $\lambda = 23,26 \text{ W/(m} \cdot \text{K})$, $\rho = 272,14 \cdot 10^3 \text{ J/kg}$, $\gamma = 7400 \text{ kg/m}^3$. Za sistem galijumindijum značenja koeficijenta k u jednačini (1) prema merenjima⁹ za difuzionu oblast ($V_k = 0 \div 0,02 \text{ m/s}$) kada brzina kristalizacije limitira difuziju u tečnoj fazi $k_1 = 10^{-4} \text{ m/(s} \cdot \text{K})$, aza kinematsku oblast ($V_k > 0,013 \text{ m/s}$) je $k_2 = 0,05 \text{ m/(s} \cdot \text{K})$.

Zamenom datih veličina u jednačini (32), dobija se:

 $x'_0 = 2,89 \cdot 10^{-6} \text{ m};$ $x''_0 = 5,77 \cdot 10^{-8} \text{ m}.$

Na taj način, samo pri veoma malim debljinama kristalisanog sloja koren jednačine (29) može biti pozitivan.

Ako jednačina (30) ima kompleksne korene, onda je opšti integral jednačine, kako sledi iz rešenja¹²:

$$y = e^{-\epsilon/2x_0} (C_1 \cos\omega\epsilon + C_2 \sin\omega\epsilon), \qquad (33)$$

$$C_1 = A \sin \phi$$
, a $C_2 = A \cos \phi$. (34
Uz uslov $\epsilon_0 = 0$ jednačina (33) dobija nov oblik:

$$y = Ae^{-t/2x_0}$$
 (sin $\omega \varepsilon + \phi$), $0 < \omega \varepsilon < \pi$ (35)

gde je:

 $A = \Delta T_{max}$ — amplitudno značenje podhladivanja. Zamenom jednačine (35) u jednačini (1) za $\phi_0 = 0$, dobija se:

$$V_k = e^{-\varepsilon/2x_s} k \bigtriangleup T_{max} \sin(\omega \varepsilon + \varphi), \ 0 < \omega \varepsilon < \pi.$$
(36)

Kružna učestalost je:

$$\omega = 2 \pi \varphi = \sqrt{\rho \gamma k / \lambda x_0}, \qquad (37)$$

gde je:

$$\varphi = (1/2 \pi) \sqrt{\rho \gamma k / \lambda x_0} - \text{frekvencija},$$
$$p = 2 \pi \sqrt{\lambda x_0 / \rho \gamma k} - \text{perioda, m.}$$
(38)

Iz jednačine (38) se vidi, da se sa udaljavanjem od površine perioda povećava. Sa povećanjem količine toplote predhodno odvedene iz metala, na primer za proračun podhlađivanja, perioda se isto tako povećava (pri $p_0 \rightarrow 0$, $p \rightarrow \infty$). Ne menjajući suštinu razmišljanja datih u jednačini (26) mogu se uvesti neke izmene u postavci zadatka, uzimajući u obzir početne uslove.

Može se pretpostaviti da je x promenljiva. U tom slučaju jednačina (26) dobija oblik:

$$(d^2y/dx^2) + (1/x)(dy/dx) + (\rho\gamma k/\lambda x)y = 0$$
 (39)

$$xy'' + y' + Ny = 0,$$
 (40)

gde je:

ili

Pomoću smene:

$$y = u(x)z = zu$$

 $N = \rho \gamma k / \lambda > 0.$

Funkcija u (x) se bira na taj način što koeficijent ispred z' je jednak nuli. Diferenciranjem jednačine (42) i zamenom dobijenih značenja u jednačini (40) dobije se:

$$u = x^{-1/2}$$
. (43)

Korišćenjem jednačine (43) nakon transformacije, dobija se:

$$x^{2}z'' + (1/4 + Nx)z = 0.$$
 (44)

Jednačina (44) javlja se kao parcijalni slučaj jednačine Bessela, za čije rešenje postoji opširna literatura¹⁵. Rešenjem jednačine (44) i zamenom rezultata u (42) dobija se izraz:

$$y = (Nx)^{-1/4} \left[C_1 \cos(2\sqrt[n]{Nx} - \frac{\pi}{4}) + C_2 \sin(2\sqrt[n]{Nx} - \frac{\pi}{4}) \right],$$
(45)

gde je:

$$C_1 = A \sin \phi_0$$
, $a C_2 = A \cos \phi_0$.

Znači onda (45) ima oblik:

$$y = (Nx)^{-1/4}$$

$$A\sin\phi_0\cos\left(2\sqrt{Nx}-\frac{\pi}{4}\right) + A\cos\phi_0\sin\left(2\sqrt{Nx}-\frac{\pi}{4}\right) =$$

$$=A(Nx)^{-1/4}\sin{(2\sqrt{Nx}-\frac{\pi}{4}+f_0)}.$$
 (46)

Ako se izraz (46) zameni u izrazu (1), onda je brzina kristalizacije:

$$V_{k} = kA(Nx)^{-1/4} \sin(2\sqrt[n]{Nx} - \frac{\pi}{4} + f_{0}).$$
 (47)

Ako je

$$B = kA(N)^{-1/4}, \ \alpha_0 = -\frac{\pi}{4} + f_0 \tag{48}$$

onda je

$$V_{k} = Bx^{-1/4} \sin(2)\sqrt{Nx} + \alpha_{0}, 0 < 2(Nx)^{1/2} < \pi.$$
 (49)

(41)

(42)

Iz jednačine (49) sledi da je:

$$2\pi \omega x = 2(Nx)^{1/2} = \omega x$$

gde je:

$$\phi = 2(Nx)^{1/2}/2\pi x = (1/\pi (N/x)^{1/2}, p = \pi (x/N)^{1/2}.$$

Zamenom vrednosti N iz (41) se dobija:

$$\mathbf{p} = \pi (\lambda \mathbf{x} / \rho \gamma \mathbf{k})^{1/2}. \tag{50}$$

Upoređivanjem rešenja jednačine (26) in (40) sledi zaključak, da je u oba slučaja faktor koji određuje periodu isti. Vrednosti periode u prvom slučaju (jednačina (38)) razlikuje se od vrednosti periode u drugom slučaju (jednačina (50)) za veličinu konstantnog množitelja 2.

ZAKLJUČAK

U radu je posmatran proces kristalizacije metala sa višeg stanovišta. Formiran je fizički model kristalizacije. Istraživana je i analitički analizirana periodičnost procesa kristalizacije binarnog sitema, čije se komponente rastvaraju neograničeno u tečnom stanju a ograničeno u tvrdom. Teorijska razmatranja su vršena pomoću teorije homogenih linearnih diferencijalnih jednačina drugog reda.

LITERATURA

- I. B. Risteski, V. Rajković, Z. Milinković; XVIII Oktobarsko savetovanje rudara i metalurga, knjiga 3, Bor 1-2 oktobar 1986, Institut za bakar Bor i Tehnički fakultet Bor, s. 137-147.
- A. V. L'kov: Teorija teploprovodnosti, Visšaja skola, Moskva, 1967.
- B. B. Guljaev: Kristallizacija metallov, AN SSSR, Moskva 1960, s. 5-34.
- D. A. Petrov: Žurnal fizičeskoj himii, 21, 1947, 13, 1449-1460.
- B. N. Savelev, V. V. Dobrovenskij, V. S. Čudakov: Kristallografija, 15, 1970, 3, 560-563.
- E. D. Dukova, E. V. Gavrilenko: Kristallografija, 14, 1969, 5, 856-866
- 5, 856-866. 7. A. A. Černov, E. D. Dukova: Kristallografija, 5, 1960, 4, 655-661.
- 8. E. A. Demjanov: Kristallografija, 15, 1970, 4, 808-811.
- Ju. E. Mateev, V. T. Borisov: Kristallografija, 20, 1975, 5, 1084-1088.
- B. B. Guljaev: Zatverdevanie i neodnorodnost stali, Metallurgizdat, Moskva-Leningrad, 1950.
- V. Š. Bajkov, N. V. Nikitskij: Neprer'vnaja razlivka stali, sb. N° 2, Metalurgija, Moskaca 1974, s. 67-75.
- V. T. Borisov: Rost kristallov, t. 3, AN SSSR, Moskva 1966.
- D. S. Mitrinović: Predavanja o diferencijalnim jednačinama, Građevinska knjiga, Beograd 1983.
- I. B. Risteski: u knjizi-D. S. Mitrinović saradnik P. M. Vasić: Diferencijalne jednačine, zbornik zadataka i problema, Naučna knjiga, Beograd 1986, s. 282-283.
- D. S. Mitrinović: Uvod u specijalne funkcije, Građevinska knjiga, Beograd 1986.

ZUSAMMENFASSUNG

Im Artikel wird der Prozess der Kristallisation von Metallen aus mehreren Gesichtspunkten behandelt. Ein physisches Modell der Kristallisation ist ausgearbeitet worden. Untersucht und analytisch analysiert wird die Regelmässigkeit vom Kristallisationsprozess im binaren System, deren Komponenten im flüssigen Zustand unbegrenzt und begrenzt im festen Zustand lösslich sind.

Theoretische Untersuchung ist mit Hilfe der Theorie der homogenen linearen Differentialgleichungen zweiten Grades ausgearbeitet worden.

SUMMARY

The paper treats the crystallization process in metals from various viewpoints. A physical model of crystallization is proposed. Investigated and analytically analyzed is the periodicity of the crystallization process in a binary system with complete solubility in liquid state and limited solubility in solid state. Theoretical investigation is based on the theory of homogeneous linear differential equations of the second order.

ЗАКЛЮУЕНИЕ

В статье рассмотрен процесс кристаллизации металлов с нескольких точек зрения. Изготовлен физический модель кристаллизации. Исследована и аналитически проанализирована периодичность процесса кристаллизации бинарных систем, компоненты которых неограничено плавки в жидком состоянии и ограничено в твёрдом. Теоретические исследования были выполнены при помо-

щи теории гомогенных линейных дифференциальных уравнений второго ряда.

Utjecaj brzine valjanja na proces hladnog valjanja sa mazivima

Dušan Ćurčija

UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2

UVOD

Ispred ulaza u zonu deformacije (slika 1.) mazivo poprima klinasti, sužavajući zazor određen površinama valjaka i valjanoga materijala (trake). Za određivanje zakonomijernosti toka maziva između valjka i trake koriste se diferencijalne jednadžbe koje nose ime Reynoldsa: [1-4]

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2}$$
 (1 a)

$$\frac{\partial \mathbf{p}}{\partial \mathbf{y}} = 0$$
 (1 b)

$$\frac{\partial u}{\partial x} + \frac{\partial z}{\partial y} = 0 \tag{1 c}$$

Iz treće diferencijalne jednadžbe (1 c) moguće je odrediti razdiobu sastavnih brzina u sloju maziva:

$$z = -\int \frac{\partial u}{\partial x} \, dy + C \ (x) \tag{2}$$

Iz druge diferencijalne jednadžbe (1 b) slijedi da je pritisak u sloju maziva stalne vrijednosti po visini zazora i mijenja se samo uzduž sloja. To dopušta da se približno analitičko riješenje parcijalne jednadžbe (1 a) može izraziti:

$$u = \frac{1}{\mu} \frac{dp}{dx} \frac{y^2}{2} + C_1(y) + C_2$$
(3)

Slika 1. Shema procesa hladnog valjanja sa mazivima za slučaj glatkih površina valjaka i valjanoga materijala

Fig. 1

Process scheme for cold rolling with lubricants for the case of smooth surfaces of rolls and rollings. Promatranja se vrše u dvodimenzionalnom sistemu XOY za viskozne nestišljive tekućine i izotermne uslove procesa. Riješenje (3) je dobiveno integracijom po osi y. Konstante integracije određuju se iz graničnih uslova : (slika 1.)

$$u = v_0 \text{ za } y = 0$$

$$u = v_{Rx} \text{ za } y = \varepsilon(x)$$
(4)

odakle slijedi:

$$C_1 = \frac{v_{Rx} - v_0}{\varepsilon(x)} - \frac{1}{\mu} \frac{dp}{dx} \frac{\varepsilon(x)}{2}$$
(5)

$$V_2 = V_0$$
 (6)

Uvrštavajući (5) i (6) u (3) dobivamo:

$$u = \frac{1}{2\mu} \frac{dp}{dx} \left[y^2 - \varepsilon(x) y \right] + \left[\frac{v_{Rx} - v_0}{\varepsilon(x)} \right] y + v_0$$
(7)

Specifična potrošnja maziva za presijek visine $\varepsilon(x)$ i jedinicu širine struje mlaza je:

C

$$Q(x) = \int_{0}^{\varepsilon(x)} u dy = -\frac{1}{12\mu} \frac{dp}{dx} \varepsilon^{3}(x) + \left[\frac{v_{0} + v_{Rx}}{2}\right] \varepsilon(x) \quad (8)$$

za x = 0

gde je:

$$Q = \frac{(v_0 + v_{Rx})\varepsilon_0}{2} \tag{9}$$

Budući da je specifična potrošnja maziva za svaki presijek jednaka izjednačenjem desnih strana (8) i (9) slijedi:

$$\frac{dp}{dx} = \frac{6\mu (v_0 + v_{Rx})}{\epsilon^2(x)} - \frac{12\mu Q}{\epsilon^3(x)}$$
(10)

U radovima [5, 6] data su analitička riješenja diferencijalne jednadžbe (10). U ovome radu vršit će se analiza tih riješenja za slučaj glatkih površina valjka i valjanoga materijala u sistemu $\varepsilon_0 = \varepsilon_0$ (v_R). Budući da nam je u tehnološkom procesu najlakše operirati sa brzinom valjanja v_R to je potrebno istaći njezin dublji utjecaj na ε_0 .

Utjecaj brzine valjanja na visinu mazivnog filma na ulaznom presijeku zone deformacije.

Riješenja diferencijalne jednadžbe (10) za slučaj $\varepsilon_a \gg \varepsilon_o$ glase

$$\varepsilon_0 = \varepsilon_0^1 - \left(\frac{\varepsilon_0^1 - \varepsilon_0^*}{\alpha^*}\right) \cdot \alpha \tag{11}$$

$$\alpha^* = 1,243 \sqrt{\frac{\varepsilon_0^1}{R}}$$
(12)

$$\epsilon_0^* = 0,772 \ \epsilon_0^1$$
 (13)

$$\varepsilon_{0}^{1} = \sqrt[3]{\frac{9\pi^{2} R \left[\mu_{0} \gamma \left(v_{0} + v_{R}\right)\right]^{2}}{32(1 - e^{-\gamma P_{0}})^{2}}}$$
(14)

Riješenja (12), (13) i (14) koriste se za područje zahvatnih kuteva $0 \le \alpha \le 0.03$. Za zahvatne kutove $0.03 \le \alpha \le 0.05$ koristi se Poligonalna metoda koja će biti data u primjeru. Kada su zahvatni kutovi $\alpha \ge 0.05$ rad mogu se koristi dvije formule:

 a) jednostavniji izraz je poznata formula Mizuna-Grudeva [7, 8];

$$\sum_{v_0}^{M} = \frac{3\mu_0 \gamma (v_0 + v_R)}{\alpha (1 - e^{-\gamma P_0})}$$
(15)

b) precizno analitičko riješenje koje pokriva područje zahvatnih kuteva $\alpha > \alpha^* + 0.03$ rad.

$$A = -\frac{\alpha}{2\epsilon_0 \left(\frac{2}{R}\epsilon_0 - \alpha^2\right)} + \frac{3\alpha}{2R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right)^2} + \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right)} + \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}} - \frac{1}{R \left(\frac{2}{R}\epsilon_0 - \alpha^2\right) \sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}{\sqrt{\alpha^2 - \frac{2}{R}\epsilon_0}}}$$

$$-\frac{3\varepsilon_0}{2R^2 \left(\frac{2}{R}\varepsilon_0 - \alpha^2\right)^2 \sqrt{\alpha^2 - \frac{2}{R}\varepsilon_0}} \ln \frac{-\alpha - \sqrt{\alpha} - \frac{2}{R}\varepsilon_0}{-\alpha + \sqrt{\alpha^2 - \frac{2}{R}\varepsilon_0}} (16)$$

А

$$\frac{1 - e^{-\gamma v_0}}{6\mu_0 \gamma (v_0 + v_R)}$$
(17)

Utjecaj brzine valjanja na visinu sloja maziva na ulaznom presijeku zone deformacije za $\alpha = 0,0212$ rad. Krivuljama odgovaraju slijedeće formule: 1 - (15), 2 - (14), 3 - (11), 4 - nu $merička integracija. Uslovi primjera: <math>\gamma = 0,137 \cdot 10^{-6} \text{ Pa}^{-1}$; Po = 7,3 · 10⁶ Pa; $\mu_0 = 0,03$ Pas; R = 0,2 m; $v_0 = 0,6 v_R$; $h_0 = 1,25 \cdot 10^{-3}$ m; $h_1 = 1,16 \cdot 10^{-3}$ m; $\epsilon_0 \gg \epsilon_0$ Fig. 2

Influence of the rolling speed on the thickness of the lubricant layer in the entering cross section of the deformation zone for $\alpha = 0.0212$ rad. Curves correspond to the following equations: 1 - (15), 2 - (14), 3 - (11), 4 - numerical integration. Conditions for the case: $\gamma = 0.137 \cdot 10^{-6}$ Pa⁻¹, Po = 7.3 $\cdot 10^{6}$ Pa; $\mu = 0.03$ Pas; R = 0.2 m; $v_0 = 0.6 v_R$; $h_0 = 1.25 \cdot 10^{-3}$ m; $h_1 = 1.16 \cdot 10^{-3}$ m; $\epsilon_a \gg \epsilon_o$.

Zavisno u kojem području zahvatnih kuteva teče tehnološki proces primjenjivat će se i data riješenja. Na slici 2 daje se interesantna komparacija za uobičajeni primjer u praksi po autorima [9,10]. Crtkanom linijom unešeno je riješenje po (11).

Zahvatni kut je $\alpha = 0,0212$ rad. Transcedentna jednadžba (16) ovdije se ne može primijeniti. Formula Mizuna-Grudeva (15) pokazuje izrazito neslaganje u odnosu na analitičko riješenje (11) i numeričku integraciju diferencijalne jednadžbe (10). U numeričkoj integraciji je funkcijska ovisnost $\varepsilon(x)$ aproksimirana relacijom:

$$\varepsilon(\mathbf{x}) = \varepsilon_0 - \alpha \mathbf{x} \div \frac{1}{2\mathbf{R}} \mathbf{x}^2 \tag{18}$$

Na slici 2. je jasno uočljiva greška formule Mizuna-Grudeva koja je inače neprihvatljiva za područija dresiranog valjanja. Formula (14) daje nešto realniju sliku tehnološkog procesa jer prati opću zakonomijernost funkcije $\varepsilon_0 = \varepsilon_0$ (v_R). Međutim do točke N na slici 2. točnija je formula (15). Točka N ima koordinate:

$$\varepsilon_0 = \frac{\pi^2 R \alpha^2}{32} ; v_0 + v_R = \frac{\pi^2 R \alpha^3 (1 - e^{-\gamma P_0})}{96 u_0 \gamma}$$
(19)

Već je na slici 2. uočljivo da nije potrebno za područija zahvatnih kuteva $\alpha < \alpha^*$ tražiti analitičko riješenje diferencijalne jednadžbe (10) u obliku transcedentne jednadžbe, jer je analitičko riješenje (11) pouzdano i sigurno.

Na slici 3 dat je utjecaj brzine valjanja na ε_0 , za područije većih zahvatnih kuteva. Primjećujemo da formula Mizuna-Grudeva ovdije čini manju grešku nego na slici 2. Također je uočljivo da Poligonalna metoda opravdava svoju sigurnost u odnosu na riješenja koja slijede iz transcedentne jednadžbe (16). Primjer primjene Poligonalne metode za brzinu valjanja v_R = 40 m/s prikazan je u tablici 1.

Mogli bi djelomično zaključiti na osnovu slike 2. i slike 3. da sa povećanjem zahvatnog kuta formula Mi-

Slika 3.

Utjecaj brzine valjanja na ε_0 za zahvatne kutove $\alpha = 0.04$ rad i $\alpha = 0.06$ rad. Krivuljama odgovaraju slijedeće formule: 1 - (15), 2 - (16), 3 - Poligonalni metod, 4 - (15), 5 - (16). Uslovi primjera: $\gamma = 0.218 \cdot 10^{-6}$ Pa⁻¹; Po = 20 \cdot 10^{6} Pa; $\mu_0 = 0.024$ Pas; R = 0.2 m; $v_0 = 0.6$ v_R ; $\varepsilon_0 \gg \varepsilon_0$

Influence of the rolling speed on ε_o for gripping angles $\alpha = 0.04$ and 0.06 rad. Curves correspond to the following equations: 1 - (15), 2 - (16), 3 - polygonal method, 4 - (15), 5 - (16).Conditions for the case: $\gamma = 0.218 \cdot 1010^{-6} \text{ Pa}^{-1}$, po = 20 $\cdot 10^6$ Pa; $\mu = 0.024 \text{ Pa}$; R = 0.2 m; $v_o = 0.6 \text{ v}_R$; $\varepsilon_s \gg \varepsilon_o$.

a [rad]	E. 10 [m]	Metod	Jednadžbe po Eo
0	39,973	Linearizacija	E'= 3/11-1 R -TR
0,01	34,774	(0 : E1)	$\sqrt{128} A^{t}$ $A = \frac{1 - e^{-t}}{6 + e^{-t}}$
0,02	29, 575	(∠* ; ε,*)	$\mathcal{E}_{*}^{*} = \frac{1}{2} R d^{*2} d^{*} = \sqrt{\frac{3}{15 R A}} = \sqrt{\frac{3}{15 R A}}$
			L Funkcijske vrijednosti Eo, određene jednadžbom (30)
0.03	26,431	Poligonalni	0,03 (End + Enos) /r
0.01	17.004	metod	$o_{r}o_{4} \left(\mathcal{E}_{o_{r}o_{4}} + \mathcal{E}_{o_{r}o_{2}} + r\mathcal{E}_{o_{r}o_{4}} \right) / r^{1}$
0,04	23,003		0,05 [EAM + EAO2 + r EAO2 + r (EAO4 + EAO2)] / r3
0,05	20,391	Mizuna-	$r^{3} \varepsilon_{o}^{\mathcal{M}} - r \left(\varepsilon_{q,ot} + 2 \varepsilon_{q,ot} \right) - \left(\varepsilon_{o,ot} + \varepsilon_{q,ot} \right) = 0 $ (30)
0,06	16.967	- Grudeva	$\mathcal{E}_{e}^{N} = \frac{1}{2 \Lambda C}$

 Tablica 1.

 Prikaz kombinirane metode

 (sa osvrtom na Poligonalnu) za proračun ε_0 pri v_R = 40 m/s. Koeficijent Poligonalne metode je r = 2,430. Uslovi primjera su isti kao na slici 3.

Table 1

Presentation of the combined method (in relation to the polygonial one) for evaluation of ε_0 at $v_R = 40$ m/s. The coefficient of the polygonial method is r = 2.430. Conditions of application are the same as in Fig. 3

zuna-Grudeva daje sve bolja riješenja i bliska točnim analitičkim riješenjima diferencijalne jednadžbe (10). Međutim, drugi važni parametar pored kuta zahvata α , koji utječe na točnost formule Mizuna-Grudeva, jeste radijus valjka. To se može matematički dokazati na transcedentnoj jednadžbi (16).

Potražimo limese desne strane transcedentne jednadžbe (16) kada $R \rightarrow +\infty$. Prva dva limesa se lako računaju direktnim uvrštavanjem i iznose:

$$A_{1} = \lim_{R \to \infty} \left[\frac{\alpha}{2\varepsilon_{0}(\frac{2}{R}\varepsilon_{0} - \alpha^{2})} \right] = -\frac{\alpha}{2\varepsilon_{0}(0 - \alpha^{2})} = \frac{1}{2\varepsilon_{0}\alpha}$$
(20)

$$A_{2} = \lim_{R \to \infty} \left[\frac{3\alpha}{2R(\frac{2}{R}\varepsilon_{0} - \alpha^{2})^{2}} \right] = \frac{3\alpha}{\infty} = 0$$
 (21)

Za traženje limesa trećega člana potrebno je izvršiti preuređenje izraza i racionalizacijom ga svesti na oblik:

$$A_{3} = \lim_{R \to \infty} \left[\frac{1}{(2\epsilon_{0} - R\alpha^{2}) \sqrt{\alpha^{2} - \frac{2}{R} \epsilon_{0}}} \right]$$
$$\ln \frac{R}{2\epsilon_{0}} \left(-\alpha - \sqrt{\alpha^{2} - \frac{2}{R} \epsilon_{0}} \right)^{2} \qquad (22)$$

odakle slijedi:

$$A_{3} = \lim_{R \to \infty} \left[\frac{\ln R}{(2\epsilon_{0} - R\alpha^{2}) \sqrt{\alpha^{2} - \frac{2}{R}\epsilon_{0}}} \right]$$
$$+ \lim_{R \to \infty} \left[\frac{\ln \frac{1}{2\epsilon_{0}} \left(-\alpha - \sqrt{\alpha^{2} - \frac{2}{R}\epsilon_{0}} \right)^{2}}{\left(2\epsilon_{0} - R\alpha^{2} \right) \sqrt{\alpha^{2} - \frac{2}{R}\epsilon^{0}}} \right]$$
(23)

$$A_{3} \equiv \left(-\frac{\infty}{\infty}\right) + \ln\left(\frac{1}{\varepsilon_{0}} \cdot 2\alpha\right) / \infty = \left(-\frac{\infty}{\infty}\right) + 0$$

$$A_{3} = \lim_{R \to \infty} \left[\frac{\frac{1}{R}}{-\alpha^{2}\sqrt{\alpha^{2} - \frac{2}{R}\varepsilon_{0}} + \frac{4\varepsilon_{0}^{2}}{2R^{2}\sqrt{\alpha^{2} - \frac{2}{R}\varepsilon_{0}}}} - \frac{\frac{1}{\frac{e_{0}\alpha^{2}}{2R\sqrt{\alpha^{2} - \frac{2}{R}\varepsilon_{0}}}}}{\frac{1}{2R\sqrt{\alpha^{2} - \frac{2}{R}\varepsilon_{0}}}} \right] = 0$$
(24)

Primjenom L'Hospitalovoga pravila nalazimo riješenje:

Četvrti i posljednji član desne strane u (16) riješavamo analogno kao prethodno:

$$A_{4} = \lim_{R \to \infty} \left[-\frac{3 \varepsilon_{0}}{2R^{2} \left(\frac{2}{R} \varepsilon_{0} - \alpha^{2}\right)^{2} \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}}} \right]$$

$$\ln \frac{R}{2\varepsilon_{0}} \left(-\alpha - \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}} \right)^{2} \right]$$

$$A_{4} = \lim_{R \to \infty} \left[-\frac{3\varepsilon_{0} \ln R}{2R^{2} \left(\frac{2}{R} \varepsilon_{0} - \alpha^{2}\right)^{2} \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}}} \right]^{+}$$

$$+ \lim_{R \to \infty} \left[\frac{3\varepsilon_{0} \ln \frac{1}{2\varepsilon_{0}} \left(-\alpha - \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}} \right)^{2}}{2R^{2} \left(\frac{2}{R} \varepsilon_{0} - \alpha^{2}\right)^{2} \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}}} \right]$$

Na prvi izraz desne strane (25) ne smijemo primjeniti L'Hospitalovo pravilo jer nas ono vodi na oblik $0/\infty$. Služeći se sa oznakama E. Landauova možemo pisati [11]:

(25)

133

$$3\varepsilon_0 \ln R = 0 \left[2R^2 \left(\frac{2}{R} \varepsilon_0 - \alpha^2 \right)^2 \sqrt{\alpha^2 - \frac{2}{R} \varepsilon_0} \right] \text{ za } R = \infty$$
(26)

Riječima bi to rekli: Funkcija In R teži slabije prema $+\infty$ od transcedentne jednadžbe nazivnika.

Tako bi prvi izraz u (25) mogli simplificirati za slučaj $R \rightarrow +\infty$ što bi omogućilo jasniji grafički prikaz dat na slici 4. Kao rezultat može se pisati:

$$A_{4} \equiv -\frac{3\varepsilon_{0}}{2} \lim_{R \to \infty} \left[\frac{\ln R}{R^{2} \left(\frac{2}{R} \varepsilon_{0} - \alpha^{2} \right)^{2} \sqrt{\alpha^{2} - \frac{2}{R} \varepsilon_{0}}} \right]$$
(27)
$$A_{4} \equiv \left[-\frac{3\varepsilon_{0}}{2} \cdot \frac{\ln R}{R^{2} \alpha^{5}} \right]_{R \to \infty}$$

Tada konačni rezultat glasi, kada R→∞:

$$A = \frac{1}{2\varepsilon_0 \alpha}$$
(28)

što je identično izrazu (15). Interesantno je provesti analizu ovisnosti $\varepsilon_0 = \varepsilon_0(v_R)$ sa utjecajem ε_a kao značajnog parametra. Za $\alpha > 0,05$ rad riješenje diferencijalne jednadžbe (10) glasi;

$$A = \frac{1}{2\alpha\varepsilon_0^{M}} - \frac{\varepsilon_0^{M} + 2\alpha \left[\sqrt{(\alpha R)^2 + 2R(\varepsilon_a - \varepsilon_0^{M})} - \alpha R \right]}{2\alpha \left[\varepsilon_0^{M} + \alpha \left(\sqrt{(\alpha R)^2 + 2R(\varepsilon_a - \varepsilon_0^{M})} - \alpha R \right]^2}$$
(29)

Ako potražimo limes desne strane izraza (29) kada a → -∞ tada primjenom L'Hospitalovog pravila ponovo dobivamo za riješenje izraz (28). Odatle zaključujemo

Slika 5.

Utjecaj visine sloja maziva na traci ispred valjaka i brzine valjanja na ε_0 za $\alpha = 0.06$ rad i $\varepsilon_a = 3.904 \cdot 10^{-5}$ m. Ostali parametri su isti kao za sliku 3.

Fig. 5

Influence of the thickness of lubricant layer on the strip in front of rolls, and of the rolling speed on ε_0 for $\alpha = 0.06$ rad, and $\varepsilon_0 = 3.904 \cdot 10^{-5}$ m. The other parameters are the same as in Fig. 3

of [rad]	varijonte	E. [m]	Δε. [m]
6-0	Ea >> Eo	E. = 15,680 10 6	7100.107
a= 0	Ea= 4,22 . 104	$\mathcal{E}_{o}^{4} = 14,934 \cdot 10^{-6}$	7,460.10
2	$\mathcal{E}_{\alpha} >> \mathcal{E}_{o}$	E= 12,114 . 10-6	-1
£=£=1,1064-10 ⁻	Ea= 1,22.104	E= 11,465 10-6	6,490-10
	$\mathcal{E}_{\alpha} >> \mathcal{E}_{o}$	E. = 5,00 · 10 6	-7
L = 0,05	Ea= 1,22 104	E. = 4,542 10 6	4,5 80-10

Tablica 2.

Usporedba rezultata za slučaj kada je $\varepsilon_{a \ge 60}$ i kada je i

Table 2

Comparison of results for the case when $\varepsilon_{a \ge 0.0}$, and when $\varepsilon_{s} = 1.22 \cdot 10^{-4}$ m. Conditions for application: $\gamma = 0.137 \cdot 10^{-6}$ Pa⁻¹; Po = 7.3 $\cdot 10^{6}$ Pa; $\mu_{0} = 1.3352 \cdot 10^{-2}$ Pa s; R = 0.2 m; $v_{0} = 0.6 v_{R}$; $v_{R} = 18$ m/s.

da formula Mizuna-Grudeva (15) predstavlja praktični i jednostavni oblik analitičkoga riješenja diferencijalne jednadžbe (10).

Na slici 5. daje se utjecaj ε_a na ε_0 u funkciji brzine valjanja v_R. Sa porastom brzine valjanja pri održavanju konstantne visine maziva na traci ispred valjaka sve je potrebnija korekcija ε_0 po ε_a .

U **tablici 2.** daje se utjecaj ε_a na ε_0 u funkciji kuta zahvata α . Sa porastom zahvatnoga kuta utjecaj ε_a na ε_0 opada pa se može zaključiti da je ε_a utjecajan parametar u procesima dresiranja (kada $\alpha \rightarrow 0$).

Potrebno je naglasiti da poprečna hrapavost povećava ε_0 u odnosu na glatke površine valjaka i valjanoga materijala. Ona dakle postiže suprotni efekat na ε_0 nego ε_a . Općenito problem podmazivanja zauzima vidno mjesto u procesima valjanja, vučenja i prešanja metala. Najbolji i najlakši put riješavanja problema sniženja kontaktnoga trenja pri obradi metala valjanjem, je tretiranje maziva kao newtonov fluid i nestišljive tekućine. Ukoliko radimo sa emulzijama tada je problem daleko

 \mathbf{E}_0

u

ŕ

složeniji, lamilarni tok se narušava u području [-a: 0] (slika 1.).

Praktična mjerenja ɛo su pokazala da se u tim slučajevima mogu javiti i suprotni efekti na ε₀, od onih koje nalažu riješenja diferencijalne jednadžbe (10) [12, 13].

Međutim, povećenje brzine valjanja povećava i inerciju maziva na traci ispred valjaka, koja utječe na gradijent pritiska na ulaznom presijeku zone deformacije. Kako nedostaju podaci, danas u svijetu, o koeficijentu proklizavanja između valjka i valjanoga materijala to se ne može definirati utjecaj inercije [14] maziva na gradijent pritiska na ulaznom presijeku zone deformacije.

ZAKLJUČAK

Analiza je provedena za lamilarni tok maziva u području [-a; 0] (slika 1.) što znači da ε0 mora biti veći od hrapavosti površina na ulaznom presijeku zone deformacije. Također je provedena za izotermne uslove tehnološkoga procesa. Na osnovu analize možemo izvući slijedeće zaključke:

 Visina sloja maziva na ulaznom presijeku zone deformacije vrlo brzo raste sa porastom brzine valjanja i taj je porast veći za manje zahvatne kutove.

2. Snižavanjem visine sloja maziva na traci ispred valjaka ɛ, snižava se i ɛ, i taj je efekt izraženiji pri većim brzinama valjanja.

 Sa porastom zahvatnih kuteva valjanja α, ε₀ teži linearizaciji u sistemu $\varepsilon_0 = \varepsilon_0(v_R)$, što je u suglasnosti sa poznatom formulom Mizuna-Grudeva. To je matematički dokazano i na transcedentnoj jednadžbi (16).

4. Poligonalna metoda proračuna ε₀ dala je dobre rezultate u sistemima $\varepsilon_0 = \varepsilon_0(v_R)$ i $\varepsilon_0 = \varepsilon_0(\alpha)$. Njezina primjena je nezaobilazna u proračunu ɛo, jer transcedentna jednadžba ima vertikalnu asimptotu za $\alpha = \alpha^*$.

5. Budući da nam je tehnološkom procesu sa brzinom valjanja najlakše operirati odatle i slijedi njezin veliki praktični interes kao parametra kojim se može utjecati na Eo.

ZAHVALA

Tema je rađena pod stručnim nadzorom Prof. Dr. Ilije Mamuzića dipl. inž., kojemu se srdačno zahvaljujem na pomoći.

Popis simbola

- kut zahvata [rad] Ct.
- α* karakteristični kut zahvata, slijedi za D=0 u izrazu (18) [rad]
- piezokoeficijenat viskoznosti maziva [Pa-1]
- visina maziva na traci ispred valjaka [m] ε,
- visina maziva u području maksimalnog pritiska [m] E
- visina maziva na izlazu iz zone deformacije [m] 82 visina maziva za zahvatne kutove $\alpha = 0.01$ rad i E0.01 I E0.02 $\alpha = 0,02$ rad
- £0 visina sloja maziva na ulaznom presijeku zone deformacije [m]

- karakteristična visina sloja maziva poznata za α* a dobivena iz istoga uvijeta, D=0 [m] visina sloja maziva kada $\alpha \rightarrow 0$ [m]
- $\epsilon_0^{\rm I}\\\epsilon_0^{\rm M}$ visina sloja maziva na ulaznom presijeku zone deformacije za zahvatne kutove $\alpha \ge 0.05$ rad
- $\varepsilon(x)$ visina sloja maziva ispred zone deformacije u području [-a; 0] (slika 1.)
 - dinamička viskoznost maziva za pritisak p [Pas]
- dinamička viskoznost maziva za pritisak po [Pas] μ_0 koordinate Decartesovog sustava
- x, y dp/dx gradijent pritiska u mazivu uzduž proizvoljno ori-
- jentirane osi x π
- transcendentni broj e baza prirodnog logaritma
- a dužina mazivoga klina (slika 1.) [m]
- visina trake prije deformacije [m] h.
- h, visina trake nakon deformacije [m]
- dužina zone deformacije [m]
- atmosferski pritisak [Pa] p
- pritisak na ulaznom presijeku zone deformacije [Pa] Po
- ü brzina gibanja maziva uzduž osi x [m/s] koeficijent Poligonalne metode
- brzina trake na ulazu u zonu deformacije [m/s] V₀
- projekcija vektora brzine valjaka na os x VRs
- VR obodna brzina valjaka (brzina valjanja) [m/s]
- brzina gibanja maziva uzduž osi y [m/s] z
- A tehnološki parametar definiran izrazom (17) [m-1] D diskriminanta kvadratne jednadžbe
- R radijus valjaka [m]
- Q volumna potrošnja maziva [m2/s]
- O(x)specifična potrošnja maziva u području [-a; 0] za presijek $\varepsilon(x)$
- identički jednako =
- 36 mnogo veće od
- < mnogo manje od

Literatura

- 1. Vinogradov G. V., Sinicin V.V.: Dokladi AN SSSR, 86 (1952)3, 573-576.
- 2. Kolmogorov V. L., Orlov S. I., Kolmogorov G. L.: Gidrodinamičeskaja podača smazki, Metallurgija, Moskva 1975.
- 3. Slezkin N. A.: Dinamika vjazkoj nesžimaemoj židkosti, Gostexizdat, Moskva 1955. 4. Grudev A. P., Tilik V. T.: Tehnologičeskie smazki v pro-
- katnom proizvodstve, Metallurgija, Moskva 1975
- 5. Curčija D., Mamuzić I.: Tehnika-RGM 32(1981)10, 1459-1462.
- 6. Curčija D., Mamuzić I.: Tehnika-RGM 34(1983)8, 1075 - 1078
- 7. Mizuno T.: Japon J. Soc. Techn. Plast 66(1966)7, 383-389
- 8. Grudev A. P., Maksimenko O. P.: Izvestija Černaja metallurgija, 14(1971)7, 105-109.
- 9. Meleško V. I., Mazur V. L., Timošenko V. I.: Izvestija Černaja metallurgija, 16(1973)10, 98-103.
- 10. Mazur V. L .: Stalj 48(1978)5, 440-444.
- 11. D. Blanuša: Viša matematika, Prvi dio, Drugi svezak, Tehnička knjiga, Zagreb 1965, str. 849.
- 12. Grudev A. P., Razmahnin A. D.: Izvestija Černaja metallurgija 28(1985)3, 52-54.
- Grudev A. P., Razmahnin A. D.: Izvestija AN SSSR -Metalli 26(1984)2, 86-88. 14. Kolmogorov G. L.: Izvestija Černaja metallurgija
- 26(1983)10, 66-71.
- Cvitaš T., Kallay N.: Fizičke veličine i jedinice Međun-15. arodnog sustava, Hrvatsko kemijsko društvo, Zagreb 1975.

ZUSAMMENFASSUNG

Auf Grund der Analyse die durch den lamilaren Strom der Schmiermittel, durch isotherme Bedingungen und durch die Nichtzusammendrückbarkeit von Flüssigkeiten begrenzt ist kann gefolgert werden:

 Die Höhe der Schmiermittelschicht am Eintrittsdurchschnitt der Verformungszone wächst sehr schnell mit der wachsenden Walzgeschwindigkeit, und dieser Zuwachs ist grösser bei kleinerem Greifwinkel.

 Mit der Reduzierung der Höhe der Schmiermittelschicht am Band vor der Walze wird die Höhe der Schmiermittelschicht am Eintrittsdurchschnitt der Verformungszone kleiner und dieser Effekt ist ausgeprägter bei höheren Walzgeschwindigkeiten. Mit grösser werdendem Greifwinkel strebt die Höhe der Schmirmittelschicht am Eintrittsdurchschnitt der Verformungszone zur Linearisation in Abhängigkeit von der Walzgeschwindigkeit. Das stimmt mit der bekannten Formel nach Mizuna-Grudeva überein.

4. Weil die Walzgeschwindigkeit geändert werden kann, folgt daraus deren praktischer Wert als Parameter, womit die Höche der Schmiermittelschicht am Eintrittsdurchschnitt der Verformungszone beeinflusst werden kann.

5. Die ausgeführten Folgerungen sind aproksimativ für Emulsionen.

SUMMARY

Based on the analysis limited by the laminar flow of lubricants, isothermal conditions, and incompressibility of liquids, the following conclusions can be made:

 The thickness of lubricant layer in the entering cross section of the deformation zone increases rapidly with the increasing rolling speed, and this increase is higher for smaller gripping angles.

 The reduced thickness of lubricant layer on strip before rolling reduces the thickness of lubricant layer in the entering cross section of the deformation zone, and this effect is more pronounced at higher rolling speeds. At increased gripping angles the thickness of lubricant layer in the entering cross section of the deformation zone has tendency to become linear in relation to the rolling speed. This is in agreement with the Mizuna-Grudeva formula.

 Since the rolling speed can be varied, it is a parameter which influences the thickness of lubricant layer in the entering cross section of the deformation zone.

5. The deduced conclusions are approximative for emulsions.

ЗАКЛЮЧЕНИЕ

На основании анализа, который ограничен с ламинарным током смазочных меществ, изотермическим условиям и настройки жидкостей, можем заключить следующее:

 Высота слоя смазочного средства на входном сечению деформационной зоны очень быстро возрастает с увеличением быстроты прокатывания и это приращение более велико при более объёмных высотны отметок.

 Снижением высоты слоя смазки на ленте перед валками понижается высота слоя смазки на входном разрезе деформационной зоны, и этот эффект более выразителен при более поспешенных быстрот прокатывания.

- 1

 С увеличением объёмных высотных отметок прокатывания стремиться высота слоя смазки на входном разрезе деформационной зоны к линовки в зависимости от быстроты прокатывания. Зто согласуется с известной формулой Мизуна — Грудева.

4. Так как быстроту прокатываний можно изменять, то из этого следует её практическое значение как параметра с которым можно влиять на высоту слоя смазки на входном сечении деформационном сечении зоны.

 Приведённые заключения аппроксимативны также для змульсий.

Odgovorni urednik: Jože Arh, dipl. inž. – Člani: dr. Jože Rodič, dipl. inž., Franc Mlakar, dipl. inž., dr. Aleksander Kveder, dipl. inž., dr. Ferdo Grešovnik, prof. dr. Andrej Paulin,

dr. Karel Kuzman, prof. Regina Razinger, lektor, Jana Jamar, tehnični urednik

Oproščeno plačilo prometnega davka na podlagi mnenja Izvršnega sveta SRS – sekretariat za informacije št. 421-1/172 od 23. 1. 1974

Naslov uredništva: SŽ Železarna Jesenice, 64270 Jesenice, C. železarjev 8, tel. št. 064/81-341, int. 2619 — Tisk: TK Gorenjski tisk, Kranj

VSEBINA

UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj 43 Metalurgija - koks - zgorevanje

A. Paulin

Mehanizem zgorevanja koksa

Železarski zbornik 21(1987)3 s 105-112

Na osnovi meritev reaktivnosti smo analizirali mehanizem reagiranja ogljika s CO2 in ugotovili, da pri meritvah reaktivnosti (950°C) poteka reakcija po vsej prostornini enakomerno in jo krmi-li kemična kinetika. Pri temperaturah, ki vladajo v spodnjih delih plavžev in kupolk, pa reakcijo krmilita kemična kinetika in notra-nja difuzija istočasno. Izdelan je primerjalni diagram med reaktivnostmi po Koppersu in po termogravimetrični metodi ter izračuna-na temperaturna odvisnost navidezne reakcijske konstante za malo in močno reaktiven koks.

Avtorjev izvleček

UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12

Metalurgija - kontinuirano vlivanje - kristalizacija Ice B. Risteski

O periodičnosti kristalizacije kovin

Železarski zbornik 21(1987)3 s 127-130

V delu je obravnavan proces kristalizacije kovin z več gledišč. Izdelan je fizični model kristalizacije. Raziskana je in analitično analizirana periodičnost procesa kristalizacije binarnega sistema. katerih komponente so neomejeno topne v v tekočem stanju in omejeno v trdnem. Teoretična raziskava je narejena s pomočjo teo-rije homogenih linearnih diferencialnih enačb drugega reda.

Avtorski izvleček

UDK: 621.771.62-415:669.14.018.5

ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53

Metalurgija, elektropločevina, valjanje, rekristalizacija, razogljičenje, mikrostruktura, tekstura

F. Vodopivec, F. Grešovnik, F. Marinšek, M. Kmetič in O. Kürner O teksturi valjanja, razogljičenja in rekristalizacije v jeklu z 0.03 C, 1.8 Si in 0.3 AL

Żelezarski zbornik 21(1987)3 s 113-118

Po vročem valjanju je tekstura bogata z lego (110) v ravnini valjanja in je praktično neodvisna od temperature valjanja ter od velj-kosti in zaporedja redukcij na vtik. Pri hladnem valjanju zraste go-stota ploskev (100) in (111) v ravnini valjanja. Po rekristalizaciji se pločevina približa izotropnosti, vendar je v ravnini pločevine še vedno nadpovprečno zrn z lego (111) in podpoprečno zrn z lego (110). Razogljičenje olajša sekundarno rekristalizacijo, pri kateri rastejo predvsem zrna z lego (111).

Avtorski izvleček

UDK: 621.771:621.89 ASM/SLA: F23, 3-67,18-73, F2 Metalurgija - hladno valjanje - lamilarni tok maziva - Reynoldsova diferencialna enaĉba D. Curčija

Vpliv hitrosti valjanja na proces hladnega valjanja z mazivi Železarski zbornik 21(1987)3 s 131-136

Analiziran je vpliv hitrosti valjanja na višino mazivnega filma na vhodnem preseku cone deformacije. Analiza je narejena za izo-termne pogoje tehnološkega postopka, lamilarni tok maziva in vi-skozne nestisljive tekočine. Višina sloja maziva na vhodnem prese-ku cone deformacije zelo hitro raste z naraščanjem hitrosti valjanja. Za majhne objemne kote pri hladnem valjanju je ta prirastek paraboličnega značaja in teži k linearizaciji pri naraščanju objemnega kota. Z zniževanjem višine sloja maziva na traku pred valji lahko vplivamo na zniževanje višine sloja maziva na vhodnem pre-seku cone deformacije. Ta efekt je bolj izrazit pri večjih hitrostih valjanja. Matematično je dokazano, da se transcendentna enačba lahko zreducira ne poznano formulo Mizuna-Grudeva

Avtorski izvleček

UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67 Metalurgija - Trenje - Obraba F. Urane

Vpliv trenja, poti, drsne hitrosti in pritiska na obrabo Železarski zbornik 21(1987)3 s 119-125

Trikratno povečanje trenja lahko poveča obrabo celo za dvajsetkrat. Trenje je pri obraziji obratno sorazmerno, pri adheziji pa sorazmerno trdoti jeklenega preizkušanca.

Na adhezijsko in abrazivno obrabo ima podvojitev pritiska trikrat tolikšen vpliv kot podvojitev drsne hitrosti.

Intenzivnost obrabe v začetnem stadiju je dobro merilo neod-pornosti proti obrabi nasploh, zato moremo za jeklo določene trdote predvideti relativno obrabno obstojnost pri določenem pritisku in določeni drsni hitrosti.

Avtorski izvleček

INHALT

UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q. E25n, N12 Metallurgie - Stranggiessen - Kristallisation Ice B. Risteski Über die Regelmässigkeiten bei der Kristallisation von Metallen

Železarski zbornik 21(1987)3 S 127-130

Im Artikel wird der Prozess der Kristallisation von Metallen aus mehreren Gesichtspunkten behandelt. Ein physisches Modell der Kristallisation ist ausgearbeitet worden. Untersucht und analy-tisch analysiert wird die Regelmässigkeit vom Kristallisationsprozess im binaren System, deren Komponenten im flüssigen Zustand unbegrenzt und begrenzt im festen Zustand lösslich sind. Theoretische Untersuchung ist mit Hilfe der Theorie der homogenen line-aren Differentialgleichungen zweiten Grades ausgearbeitet worden.

Auszug des Autors

UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43 Metalurgie-Koksverbrenung M. Paulin

Mehanismus der Koksverbrennung

Železarski zbornik 21(1987)3 S 105-112

Auf Grund der Reaktionsfähigkeitsmessungen von Koks ist der Mechanismus der Reaktion von Kohlenstoff mit CO₂ analisiert worden und dabei festgestellt, dass bei den Reaktionsfähigkeitsmessungen (950 C) die Reaktion im ganzen Raum gleichmassig ver-läuft und durch die chemische Kinetik gesteuert wird. Bei den Temperaturen die im unteren Teil von Hoch und Kupolöfen her-schen wird die Reaktion durch die chemische Kinetik und innere Diffusion gleichzeitig gesteuert. Ein Vergleichsdiagramm zwischen der Bentische Kinetik und kommen und Kupolöfen herder Reaktionsfähigkeit nach Koppers und der thermogravimetrischen Methode ist ausgearbeitet und die Temperaturabhängikeit der scheinbaren Reaktionskonstante für einem wenig und einen stark reaktionsfähigen Koks ist ausgerechnet worden.

Auszug des Autors

UDK: 621.771:621.89

ASM/SLA: F23. 3-67, 18-73, F2

Metallurgie - kaltwalzen - lamilaler Schmiermittelstrom - Reynoldsche Differentialgleichung D. Curciia

Einfluss der Walzgeschwindigkeit auf den Prozess des Kaltwalzens mit Schmiermitteln

Železarski zbornik 21(1987)3 S 131-136

Einfluss der Walzgeschwindigkeit auf die Höhe des Schmiermittelfilmes am Eintrittsdurchschnitt der Verformungszone ist analysiert worden. Die Analyse ist für Isotherme Bedingungen des tech-nologischen Verfahrens den lamilaren Schmiermittelstrom und vis-kose Nichtzusammendrückbare Flüssigkeiten ausgearbeitet worden. Die Höhe der Schmiermittelschicht am Eintrittsdurchschnitt Verformungszone wächst sehr schnell mit der wachsenden Walzgeschwindigkeit. Bei kleinen Greifwinkeln hat dieser Zuwachs beim Kalzwalzen einen parabolischen Charakter und strebt zur Linearisation beim zunehmenden Greifwinkel. Mit abnehmender Höhe der Schmiermittelschicht am Band vor

der Walze kann das Abnehmen der Höhe der Schmiermittelschicht am Eintrittsdurchschnitt der Verformungszone beeinflusst werden. Dieser Effekt ist ausgeprägter bei höheren Walzgeschwindigkeiten. Mathematisch ist bewiesen worden, dass die transzendente Glei-chung auf die bekannte Formel von Mizuna-Grudeva reduziert werden kann. Auszug des Autors

UDK: 621.771.62-415:669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53 Metallurgie - Elektrobleche - Walzen - Rekristallisation -

Entkohlung - Mikrogefüge - Walzgefüge F. Vodopivec, F. Grešovnik, F. Marinšek, M. Kmetič, O. Kürner

Über das Walzgefüge, Entkohlung und Rekristallisation im Stahl mit 0,03 % C, 1,8 % Si und 0,3 % Al

Železarski zbornik 21(1987)3 S 113-118

Nach dem Warmwalzen ist das Walzgefüge reich an der Lage (110) in der Walzebene ind ist praktisch unabhängig von der Walztemperatur von der Grösse und der Reihenfolge der Stichabnahme. Beim Kaltwalzen wird die Dichte der Flächen (100) und (111) in der Walzebene grösser. Nach der Kristallisation nähert sich der Stahl der Isotropie, jedoch bleibt die Dichte der Körner der (111) immer noch über dem Durchschnitt und der Körner mit der Lage (110) unter dem Durchschnitt in der Blechebene. Die Entkohlung begünstigt die sekundäre Rekristallisation bei welcher sind zum Wähstum vorallem die Körner mit der Lage (111) geneigt.

Auzug des Autors

UDK:620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67 Metalurgie - Reibung - Verschleiss F. Urane

Einfluss der Reibung, der Wege, der Gleitgesehwindigkeit und des Druckes auf den Verschleiss

Železarski zbornik 21(1987)3 S 119-125

Eine dreifache Vergrösserung der Reibung vergrössert den Verschleiss sogar bis auf zwanzigmal. Die Reibung ist beim schleifenden Verschleiss umgekehrt proportional und beim adhesiven Verschleiss proportional der Härte der Stahlprobe. Auf den adhesi-ven und schleifenden Verschleiss hat die Verdopplung des Druckes einen dreifach so hohen Einfluss als die Verdopplung der Gleitgeschwindigkeit. Die Intensität des Verschleisses im Anfangsstadium ist ein gutes Mass gegen die Nichtwiderstandsfähigkeit gegen den Verschleiss im allgemeinen, deshalb kann für einen Stahl be-stimmter Härte eine relative Verschleissbeständigkeit bei bestimm-ten Druck und bestimmter Gleitgeschwindigkeit vorgesehen werden Auszug des Autors

CONTENTS

UDK: 669.014.72:669.162.16 ASM/SLA: C21, RMj43 Metallurgy – Coke – Combustion A. Paulin

Mechanism of Coke Combustion

Železarski zbornik 21(1987)3 P 105-112

Based on the reactivity measurements the mechanism of the carbon — CO_2 reaction was analyzed, and it was found that porous coke reacts throughout the whole volume uniformly at the temperature of reactivity measurements (950°C) and that the reaction is chemically controlled. At the temperatures which are in the lower parts of blast furnaces and cupola furnaces the reaction is controlled by a mixed chemical-kinetics and internal-diffusion mechanism. A graphical comparison between the reactivity values by Koppers and by the thermogravimetrical method was constructed. The temperature variation of an apparent reaction rate constant for a low and high reactive coke was also presented.

Author's Abstract

UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12

Metallurgy — Continuous Casting — Crystallization I.B. Risteski On the Periodicity of Crystalization of Metals

Železarski zbornik 21(1987)3 P 127-130

Paper treats the crystallization process of metals from various viewpoints. A physical model of crystallization is proposed. Investigated and analytically analyzed is the periodicity of the crystallization process in a binary system with complete solubility in liquid state and limited solubility in solid state. Theoretical investigation is based on the theory of homogeneous linear differential equations of the second order.

Author's Abstract

UDK: 621.771.62-415: 669.14.018.5 ASM/SLA: F23, M28k, M26c, N5, J4a, AY, 4-53 Metallurgy – Electrical Plate – Rolling – Recrystallization – Decarburisation – Microstructure – Texture F. Vodopivec, F. Grešovnik, F. Marinšek, M. Kmetič in O. Kūrner On Texture of Rolling, Decarburisation, and Recrystallization in Steel with 0.03 C, 1.8 Si, and 0.3 Al Železarski zbornik 21(1987)3 P 113–118

After hot rolling the texture is rich with the (110) position in the plane of rolling, and it is practically independent on the rolling temperature, and on the size and sequence of reductions in single passes. In cold rolling the density of (100) and (111) planes in the plane of rolling is increased. After recrystallization the sheet approaches to the isotropical state, but in the plane of sheet there is still an overaverage number of grains with the position (111) and an underaverage number of grains with the position (110). Decarburisation facilitates the secondary recrystallization in which mainly grains with position (111) grow.

Author's Abstract

UDK: 620.178.162 ASM/SLA: Q9n, Q9p, 3-74, 3-67 Metallurgy — Friction — Wear F. Uranc

Influence of Friction, Sliding Path, Sliding Speed, and Pressure on the Wear

Železarski zbornik 21(1987)3 P 119-125

Increase of friction for three times can increase the wear even for twenty times. Wear in abrasion is inversely proportional while wear in adhesion is directly proportional to the hardness of steel sample.

Doubling of pressure has three times higher effect on the adhesive and abrasive wear than doubling of the sliding speed. The wear intensity in the initial stage is a good measure for wear resistance in general, thus the relative wear resistance can be forecast for a given pressure and given sliding speed for steel with a known hardness.

Author's Abstract

UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2 Metallurgy — Cold Rolling — Laminar Flow of Lubricant — Reynolds Differential Equation D. Čurčija

Influence of the Rolling Speed on the Process of Cold Rolling with Lubricants

Železarski zbornik 21(1987)3 P 131-136

The influence of the rolling speed on the thickness of lubricant layer in the entering cross section of the deformation zone is analyzed. The analysis was made for isothermal conditions of the technological process, laminar flow of lubricant, and viscous incompressible fluids. The thickness of the lubricant layer in the entering cross section of the deformation zone very rapidly increases with the increased rolling rate. For small gripping angles in cold rolling this increase has parabolic shape, and it is becoming linear at greater gripping angles. The reduction of the thickness of the lubricant layer on the strip in front of the rolls reduces the thickness of the lubricant layer in the entering cross section of the deformation zone. This effect is more pronounced at higher rolling speeds. Mathematically it is proved that the transcendent equation can be reduced to the known Mizuna-Grudeva formula.

Author's Abstract

СОДЕРЖАНИЕ

UDK: 621.74.047:548.5:669-17 ASM/SLA: D9q, E25n, N12

Металлургия — непрерывное литьё — кристаллизация Ice B. Risteski

О периодичности кристаллизации металлов.

Železarski zbornik 21(1987)3 C 127-130

В статье рассмотрен процесс кристаллизации металлов с нескольких точек зрения. Изготовлен физический модель кристаллизации. Исследована и аналитически проанализирована периодичность процесса кристаллизации бинарной системы, компоненты которых неограничено плавки в жидком состоянии и ограничено в твёрдом. Теоретическое исследование было выполиено при помощи теории гомогенных линейных дифференциальных управнений второго ряда.

Автореф.

UDK: 669.014.72:669.162.16 ASM/SLA: C21a, RMj43 Металлургия — кокс — горение A. Paulin

Механизм сгорания кокса.

Železarski zbornik 21(1987)3 C 105-112

На основании измерении реакционной инертности мы проанализировали механизм реакции углерода с СО: и установили, что при всех измерениях реактивности (950°С) протекает реакция по всей ёкности равномерно при управлении её со стороны химической кинетики. При температурах, которые существуют в нижних частях домн и вагранок этой реакцией управляют химическая кинетика и внутренная диффузия одновремено.

Приготовили сравнительную диаграмму между реактивностими по Копперс-у и по термогравиметрическом методу, и высчитана температурная зависимость кажущийся константы скорости реакции для кокс назначительной и сильной реактивности.

Автореф.

UDK: 621.771:621.89 ASM/SLA: F23, 3-67, 18-73, F2

Металлургия — холодная прокатка — ламинарный поток смазки — дифференциальное уравнение по Рейнолдс-у D. Čurčija

Влияние быстроты прокатки на процесс прокатки с смазочным материалом.

Železarski zbornik 21(1987)3 C 131-136

Выполнен анализ влияния быстроты прокатки на высоту смазочной плёнки на входном разрезе в зоне деформации. Анализ сделан для изометрических условий технологического способа, для ламинарного потока смазки и для вискозно некомпрессной жидкости. Высота слоя смазки на входном разрезе зоны деформации очень быстро возрастает с увеличением быстроты прокатки. Для небольших охватов высотных отметок это приращение имеет параболическое значение и устремляется к линовки при приращении высотной отметки. Снижением высоты слоя смазки на ленте перед валками можно повлиять на высоты слоя смазки на яходном разрезе зоны деформации. Этот эффект более выразителен при больших скоростях прокатки. Математическим путём доказано, что трансцендентное уравнение можно редуцировать на известную формулу Мизуна — Грудева.

Автореф.

UDK: 621.771.62-415:669.14.018.5

ASM/SLA: F23, M28k, M26C, N5, J4a, AY, 4-53

Металлургия — электротехническая листовая сталь — прокатка — рекристаллизация — обезуглероживание — микроструктура — текстура

F. Vodopivec, F. Grešovnik, F. Marinšek, M. Kmetič, O. Kürner О текстуре прокатки, обезуглероживания и рекристаллизации в стале с 0,03 C, 1,8 Si и 0,3 AI.

Železarski zbornik 21(1987)3 C 113-118

После горячей прокатки сталь в начальной плоскости богата слоем (110) и практически независима от температуры прокатывания, а также от величины и последовательности редукции на пропуск. При холодной прокатки возрастает густота плоскостей (100) и (111) в плоскости прокатки. После рекристаллизации листовая сталь приближается изотропности, хотя в начальной плоскости листовой стади всё ещё преобладают зёрна с положением (111) и положения (110) с зёрнами ниже среднего содержания. Обезуглероживание улучшает вторичиую рекристаллизацию, при которой возрастают главным образом зёрна положения (111).

Автореф.

UDK: 620.178.162 ASM/SLA: Q9п. Q9р. 3-74, 3-67 Металлургия — трение — износ

F Urane

Влияние трения, пути быстроты скольжения и давления на износ.

Železarski zbornik 21(1987)3 C 119-125

Троекратное увеличение трения может увеличить износ даже в двенадцать раз. Трение при абразии (износе) обратно пропорционально, а при адгезии пропорционально твёрдости образна.

На адгезийский и абразивный износ оказывает удвоенное давление три раза больше влияние, чем удвоение быстроты скольжения.

Интенсивность износа в начальной фазе представляет собой хорошое мерило неустойчивости против износу вообще, и поэтому надо для стали определённой твёрдости предусмотреть релятивную устойчивость износа при определенном давлении и определенной быстроте скольжения.

Автореф.